Skip to main content
Log in

Allophlebia, a new genus to accomodate Phlebia ludoviciana (Agaricomycetes, Polyporales)

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Allophlebia is proposed as a new genus in Meruliaceae based on morphological characters and molecular data. The genus, so far monotypic, is typified by Peniophora ludoviciana and the new combination A. ludoviciana is proposed. The type species is characterized by a resupinate basidioma, a monomitic hyphal system with clamp connections, two types of cystidia (leptocystidia and metuloids), clavate basidia, and hyaline, thin-walled and ellipsoid basidiospores. A phylogeny for Allophlebia and related taxa was inferred from ITS and nLSU rDNA sequences and new information on the geographic distribution of A. ludoviciana is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All material is deposited in Herbarium URM and O. The sequences are deposited in GenBank. Data will be available online after the acceptance of the manuscript in http://www.splink.org.br/ and https://www.ncbi.nlm.nih.gov/genbank/.

Code availability

Not applicable

References

  • Bernicchia A, Gorjón SP (2010) Corticiaceae s.l. Fungi Europaei vol. 12. Edizioni Candusso, Alassio, Italy

  • Binder M, Justo A, Riley R, Salamov A, Lopez-Giraldez F, Sjökvist E, Copeland A, Foster B, Sun H, Larsson E, Larsson K-H, Townsend J, Grigoriev IV, Hibbett DS (2013) Phylogenetic and phylogenomic overview of the Polyporales. Mycologia 105(6):1350–1373. https://doi.org/10.3852/13-003

  • Bonfield JK, Smith K, Staden R (1995) A new DNA sequence assembly program. Nucleic Acids Research 24:4992–4999. https://doi.org/10.1093/nar/23.24.4992

    Article  Google Scholar 

  • Brazee NJ, Lindner DL, D’Amato AW, Fraver S, Forrester JA, Mladenoff DJ (2014) Disturbance and diversity of wood-inhabiting fungi: effects of canopy gaps and downed woody debris. Biodivers Conserv 23(9):2155–2172. https://doi.org/10.1007/s10531-014-0710-x

    Article  Google Scholar 

  • Comby M, Lacoste S, Baillieul F, Profizi C, Dupont J (2016) Spatial and temporal variation of cultivable communities of co-occurring endophytes and pathogens in wheat. Front Microbiol 7:403. https://doi.org/10.3389/fmicb.2016.00403

    Article  PubMed  PubMed Central  Google Scholar 

  • De Koker TH, Nakasone KK, Haarhof J, Burdsall HH Jr, Janse BJH (2003) Phylogenetic relationships of the genus Phanerochaete inferred from the internal transcribed spacer region. Mycol Res 107(9):1032–1040. https://doi.org/10.1017/S095375620300827X

    Article  CAS  PubMed  Google Scholar 

  • DeVries AE, Kowalski KP, Bickford WA (2020) Growth and behavior of North American microbes on Phragmites australis Leaves. Microorganisms 8(5):690

    Article  CAS  PubMed Central  Google Scholar 

  • Donk MA (1931) Revisie van de Nederlandse Heterobasidiomycetae en HomobasidiomycetaeAphyllophoraceae I. Mededeelingen van de Nederlandsche Mycologische Vereeniging 18-20:67–200

  • Donk MA (1957) Notes on resupinate Hymenomycetes – IV. Fungus 27:1–29

  • Eo JK, Park H, Eom AH (2018) Diversity of endophytic fungi isolated from Pinus densiflora and Juniperus rigida distributed in Mt. Baekryeonsan and Mt. Johangsan, Korea. Korean J Mycol 46(4):437–446. https://doi.org/10.4489/KJM.20180048

    Article  Google Scholar 

  • Eriksson J, Hjortstam K, Ryvarden L (1981) The Corticiaceae of North Europe. Volume 6. PhlebiaSarcodontia. Fungiflora: Oslo, Norway. 225 pp

  • Floudas D, Hibbett DS (2015) Revisiting the taxonomy of Phanerochaete (Polyporales, Basidiomycota) using a four gene dataset and extensive ITS sampling. Fungal Biol 119:679–719. https://doi.org/10.1016/j.funbio.2015.04.003

  • Fonseca MI, Fariña JI, Sadañoski MA, D’Errico R, Villalba LL, Zapata PD (2015) Decolorization of Krafliquor effluents and biochemical characterization of laccases from Phlebia brevispora BAFC 633. Int Biodeterior Biodegrad 104:443–451. https://doi.org/10.1016/j.ibiod.2015.07.014

    Article  CAS  Google Scholar 

  • Fries E (1828) Elenchus Fungorum I. Greifswald, Germany 238 pp

    Google Scholar 

  • Ghobad-Nejhad M, Hallenberg N (2012) Multiple evidence for recognition of Phlebia tuberculata, a more widespread segregate of Phlebia livida (Polyporales, Basidiomycota). Mycol Prog 11(1):27–35

  • Goés-Neto A, Loguercio-Leite C, Guerrero RT (2005) DNA extraction from frozen field collected and dehydrated herbarium fungal basidiomata: performance of SDS and CTAB based methods. Biotemas 18(2):19–32

    Google Scholar 

  • Hjortstam K, Larsson K-H, Ryvarden L (1987) The Corticiaceae of North Europe (Introduction and Keys). Fungiflora, Oslo 59 pp

  • Jang Y, Jang S, Lee J, Lee H, Lim YW, Kim C, Kim JJ (2016) Diversity of wood-inhabiting polyporoid and corticioid fungi in Odaesan National Park, Korea. Mycobiology 44(4):217–236. https://doi.org/10.5941/myco.2016.44.4.217

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaouen G, Sagne A, Buyck B, Decock C, Louisanna E, Manzi S, Baraloto C, Roy M, Schimann H (2019) Fungi of French Guiana gathered in a taxonomic, environmental and molecular dataset. Scientific Data 6:206. https://doi.org/10.1038/s41597-019-0218-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Justo A, Miettinen O, Floudas D, Ortiz-Santana B, Sjökvist E, Lindner D, Nakasone K, Niemelä T, Larsson K-H, Ryvarden L, Hibbett DS (2017) A revised family-level classification of the Polyporales (Basidiomycota). Fungal Biology 121:798–824. https://doi.org/10.1016/j.funbio.2017.05.010

    Article  PubMed  Google Scholar 

  • Klomklieng P, Thanananta T, Sakkayawong N, Somrithipol S (2014) Identification of reactive Red 141 degradable fungi by ITS-PCR method and decolorization ability. Thammasat J Sci Technol 22:683–694

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msw054

    Article  CAS  Google Scholar 

  • Kuuskeri J, Mäkelä MR, Isotalo J, Oksanen I, Lundell T (2015) Lignocellulose-converting enzyme activity profiles correlate with molecular systematics and phylogeny grouping in the incoherent genus Phlebia (Polyporales, Basidiomycota). BMC Microbiology 15:217–235. https://doi.org/10.1186/s12866-015-0538-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson K-H (2007) Re-thinking the classification of corticioid fungi. Mycol Res 111:1040–1063. https://doi.org/10.1016/J.MYCRES.2007.08.001

    Article  PubMed  Google Scholar 

  • Larsson K-H, Larsson E, Kõljalg U (2004) High phylogenetic diversity among corticioid homobasidiomycetes. Mycol Res 108:983–1002. https://doi.org/10.1017/S0953756204000851

    Article  CAS  PubMed  Google Scholar 

  • Larsson K-H, Parmasto E, Fischer M, Langer E, Nakasone KK, Redhead SA (2006) Hymenochaetales: a molecular phylogeny for the hymenochaetoid clade. Mycologia 98:926–936

    Article  PubMed  Google Scholar 

  • Lima-Júnior NC, Gibertoni TB, Malosso E (2014) Delimitation of some neotropical laccate Ganoderma (Ganodermataceae): molecular phylogeny and morphology. Rev Biol Trop Int J Trop Biol Conserv 62:1197–1208. https://doi.org/10.15517/rbt.v62i3.12380

    Article  Google Scholar 

  • Martin R, Gazis R, Skaltsas D, Chaverri P, Hibbett D (2015) Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea. Mycologia 107:282–297. https://doi.org/10.3852/14-206

    Article  Google Scholar 

  • Maynard DS, Bradford MA, Lindner DL, Van Diepen LTA, Frey SD, Glaeser JA, Crowther TW (2017) Diversity begets diversity in competition for space. Nat Ecol Evol 1(6):01–56. https://doi.org/10.1038/s41559-017-0156

    Article  Google Scholar 

  • Mesquita N, Portugal A, Videira S, Rodríguez-Echeverría S, Bandeira AML, Santos MJA, Freitas H (2009) Fungal diversity in ancient documents. A case study on the Archive of the University of Coimbra. Int Biodeterior Biodegrad 63(5):626–629. https://doi.org/10.1016/j.ibiod.2009.03.010

    Article  CAS  Google Scholar 

  • Milne I, Lindner D, Bayer M, Husmeier D, McGuire G, Marshall DF, Wright F (2008) TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics 25:126–127. https://doi.org/10.1093/bioinformatics/btn575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moncalvo JM, Lutzoni FM, Rehner SA, Johnson J, Vilgalys R (2000) Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst Biol 49:278–305

    Article  CAS  PubMed  Google Scholar 

  • Moreno G, Blanco MN, Checa J, Platas G, Peláez F (2010) Taxonomic and phylogenetic revision of three rare irpicoid species within the Meruliaceae. Mycol Prog 10(4):481–491. https://doi.org/10.1007/s11557-010-0717-y

    Article  Google Scholar 

  • Nakasone KK (1990) Cultural studies and identification of wood-inhabiting Corticiaceae and selected Hymenomycetes from North America. Mycol Mem 15:1–412

    Google Scholar 

  • Nakasone KK (1991) Molecular systematics of Phlebia (Aphyllophorales, Basidiomycotina, Corticiaceae). Ph.D. Dissertation, Univ. Wisconsin, Madison, Wisconsin

  • Nakasone KK (1996) Morphological and molecular studies on Auriculariopsis albomellea and Phlebia albida and a reassessment of A. ampla. Mycologia 88:762–775

    Article  Google Scholar 

  • Nakasone KK (1997) Studies in Phlebia. Six species with teeth. Sydowia 49:49–79

    Google Scholar 

  • Nakasone KK (2002) Mycoaciella, a synonym of Phlebia. Mycotaxon 81:477–490

    Google Scholar 

  • Nakasone KK, Burdsall HH (1984) Merulius, a synonym of Phlebia. Mycotaxon 21:241–246

    Google Scholar 

  • Nakasone KK, Burdsall HH, Noll LA (1982) Species of Phlebia section Leptocystidiophlebia (Aphyllophorales, Corticiaceae) in North America. Mycotaxon 14(1):3–12

    Google Scholar 

  • Ndinga-Muniania C, Mueller RC, Kuske CR, Porras-Alfaro A (2021) Seasonal variation and potential roles of dark septate fungi in an arid grassland. Mycologia 113(6):1181–1198. https://doi.org/10.1080/00275514.2021.1965852

    Article  CAS  PubMed  Google Scholar 

  • Pereira JS, Costa RR, Nagamoto NS, Forti LC, Pagnocca C, Rodrigues A (2016) Comparative analysis of fungal communities in colonies of two leaf-cutting ant species with different substratum preferences. Fungal Ecol 21:68–75. https://doi.org/10.1016/j.funeco.2016.03.004

    Article  Google Scholar 

  • Pérez-Izquierdo L, Morin E, Maurice JP, Martin F, Rincón A, Buée M (2017) A new promising phylogenetic marker to study the diversity of fungal communities: the Glycoside Hydrolase 63 gene. Mol Ecol Resour 17(6):1–11. https://doi.org/10.1111/1755-0998.12678

    Article  CAS  Google Scholar 

  • Pinruan U, Rungjindamai N, Choeyklin R, Lumyong S, Hyde KD, Gareth Jones EB (2010) Occurrence and diversity of basidiomycetous endophytes from the oil palm, Elaeis guineensis in Thailand. Fungal Divers 41:71–88. https://doi.org/10.1007/s13225-010-0029-1

    Article  Google Scholar 

  • Rajchenberg M, Wright JE (1987) Type studies of Corticiaceae and Polyporaceae (Aphyllophoralles) described by C. Spegazzini. Mycologia 79(2):246–264

    Article  Google Scholar 

  • Rambaut A (2014) FigTree v. 1.4.2. Available at <http://tree.bio.ed.ac.uk/software/figtree/>

  • Rittenour WR, Ciacci CE, Barnes CS, Kashon ML, Lemons AR, Beezhold DH, Green BJ (2014) Internal transcribed spacer rRNA gene sequencing analysis of fungal diversity in Kansas City indoor environments. Environ Sci Proc Impacts 16(1):33–43. https://doi.org/10.1039/C3EM00441D

    Article  CAS  Google Scholar 

  • Rodrigues A, Mueller UG, Ishak HD, Bacci M Jr, Pagnocca FC (2011) Ecology of microfungal communities in gardens of fungus-growing ants (Hymenoptera: Formicidae): a year-long survey of three species of attine ants in Central Texas. FEMS Microbiol Ecol 78(2):244–255. https://doi.org/10.1111/j.1574-6941.2011.01152.x

    Article  CAS  PubMed  Google Scholar 

  • Rogers L, Cappellazzi J, Morrell JJ (2020) Effect of distance above-ground on fungal colonization of blackgum and red oak ties during air-seasoning. Int Wood Prod J 1–8. https://doi.org/10.1080/20426445.2020.1774851

  • Rogers DP, Jackson HS (1943) Notes of the synonymy of some North American Thelephoraceae and other resupinates. Farlowia 1:263–328

    Google Scholar 

  • Shen S, Ma X, Xu TM, Zhao CL (2018) Phlebia ailaoshanensis sp. nov. (Polyporales, Basidiomycota) evidenced by morphological characters and phylogenetic analyses. Phytotaxa 373(3):184–196. https://doi.org/10.11646/phytotaxa.373.3.2

    Article  Google Scholar 

  • Sjökvist E, Larsson E, Eberhardt U, Ryvarden L, Larsson KH (2012) Stipitate stereoid basidiocarps have evolved multiple times. Mycologia 104(5):1046–1055. https://doi.org/10.3852/11-174

    Article  PubMed  Google Scholar 

  • Smith BJ, Sivasithamparam K (2000) Isozymes of Ganoderma species from Australia. Mycol Res 104(8):952–961. https://doi.org/10.1017/S0953756200002446

    Article  CAS  Google Scholar 

  • Suhara H, Sakai K, Kondo R, Maekawa N, Kubayashi T (2002) Identification of the basidiomycetous fungus isolated from butt rot of the Japanese cypress. Mycoscience 43(6):477–481. https://doi.org/10.1007/s102670200070

    Article  Google Scholar 

  • Telleria MT, Dueñas M, Martín MP (2017) Three new species of Hydnophlebia (Polyporales, Basidiomycota) from the Macaronesian Islands. MycoKeys 27:39–64

    Article  Google Scholar 

  • Tomšovský M (2016) Sarcodontia crocea (Basidiomycota, Polyporales) is unrelated to Spongipellis. Phytotaxa 288(2):197–200. https://doi.org/10.11646/phytotaxa.288.2.12

  • Vellinga EC, Kuyper TW, Ammirati J, Desjardin DE, Halling RE, Justo A, Læssøe T, Lebel T, Lodge DJ, Matheny PB, Methven AS, Moreau PA, Mueller GM, Noordeloos ME, Nuytinck J, Ovrebo CL, Verbeken A (2015) Six simple guidelines for introducing new genera of fungi. IMA Fungus 6:65–68. https://doi.org/10.1007/BF03449356

    Article  Google Scholar 

  • Vieira MLA, Hughes AFS, Gil VB, Vaz ABM, Alves TMA, Zani CL, Rosa CA, Rosa LH (2012) Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell. (Solanaceae). Can J Microbiol 58(1):54–66. https://doi.org/10.1139/w11-105

    Article  CAS  PubMed  Google Scholar 

  • Vu D, Groenewald M, De Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald JZ, Cardinali G, Houbraken J, Boekhout T, Crous PW, Robert V, Verkley GJM (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud Mycol 92:135–154. https://doi.org/10.1016/j.simyco.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  • Watling R (1969) Colour identification chart. Her Majesty’s Stationary Office, Edinburgh

    Google Scholar 

  • Westphalen MC, Rajchenberg M, Tomsovsky M, Gugliotta AM (2018) A re-evaluation of Neotropical Junghuhnia s.lat. (Polyporales, Basidiomycota) based on morphological and multigene analyses. Persoonia 41:130–141. https://doi.org/10.3767/persoonia.2018.41.07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols, a Guide to Methods and Applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Wu F, Yuan Y, Chen JJ, He SH (2016) Luteoporia albomarginata gen. et sp. nov. (Meruliaceae, Basidiomycota) from tropical China. Phytotaxa 263(1):31–41. https://doi.org/10.11646/phytotaxa.263.1.3

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Angelina Meiras-Ottoni and Renato Lúcio Mendes Alvarenga for donations of collections, the Herbário Pe. Camille Torrend (URM) for the loan of the exsiccates. We also would like to thank Nordesta Reforestation & Education for support for field work at Biological Reserve of Pedra Talhada.

Funding

This research was funded by CNPq (563342/2010-2, 457476/2012-5, 307601/2015-3, 421241/2017-9), CAPES (Capes-SIU 008/13, CRLS and RSC scholarships) and FACEPE (ATP-0021-2.03/18, APQ-0788-2.03/12, CRLS, RSC and VXL scholarships).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by all authors. The first draft of the manuscript was written by Carla Rejane de Sousa Lira and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Karl-Henrik Larsson and Tatiana B. Gibertoni provided funds and supervised this research.

Corresponding author

Correspondence to Renata dos Santos Chikowski.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Section Editor: Yu-Cheng Dai

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sousa Lira, C.R., dos Santos Chikowski, R., de Lima, V.X. et al. Allophlebia, a new genus to accomodate Phlebia ludoviciana (Agaricomycetes, Polyporales). Mycol Progress 21, 47 (2022). https://doi.org/10.1007/s11557-022-01781-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11557-022-01781-5

Keywords

Navigation