Skip to main content
Log in

A compact CNN approach for drone localisation in autonomous drone racing

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

In autonomous drone racing, a drone flies through a gate track at high speed. Some solutions involve the use of camera localisation to control the drone. However, effective localisation is very demanding in processing time, which may compromise the flight speed. To address the latter, we propose a deep learning-based method for camera localisation that processes a small sequence of images of the scene at high-frequency operation. Our solution is a compact convolutional neural network based on the Inception network that uses a sequence of grey-scale images rather than colour images as input; we have called this network ‘GreySeqNet’. Our approach aims at leveraging the localisation process using a small stack of consecutive images fed as input to the network. To save computational effort, we explore the use of grey images instead of colour images, thus saving convolutional layers. We have conducted experiments in a simulated environment to measure the performance of GreySeqNet in different race tracks with variations in gate’s height and position. According to the results obtained in several test runs, our method achieves a camera pose estimation at an average operation frequency of 83 Hz running on GPU and 26 Hz on CPU, with an average camera pose error of 31 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/. Software available from tensorflow.org

  2. Bang, J., Lee, D., Kim, Y., Lee, H.: Camera pose estimation using optical flow and orb descriptor in slam-based mobile ar game. In: 2017 International Conference on Platform Technology and Service (PlatCon), pp. 1–4 (2017). https://doi.org/10.1109/PlatCon.2017.7883693

  3. Casarrubias-Vargas, H., Petrilli-Barcelo, A., Bayro-Corrochano, E.: EKF-slam and machine learning techniques for visual robot navigation. In: 2010 20th International Conference on Pattern Recognition, pp. 396–399 (2010). https://doi.org/10.1109/ICPR.2010.105

  4. Chollet, F., et al.: Keras (2015). https://keras.io

  5. Cocoma-Ortega, J.A., Martinez-Carranza, J.: A CNN-based drone localisation approach for autonomous drone racing. In: Campoy, P. (ed.) 11th International Micro Air Vehicle Competition and Conference (IMAV2019), pp. 89–94 (2019)

  6. Cocoma-Ortega, J.A., Martínez-Carranza, J.: Towards high-speed localisation for autonomous drone racing. In: Martínez-Villaseñor, L., Batyrshin, I., Marín-Hernández, A. (eds.) Advances in Soft Computing, pp. 740–751. Springer, Cham (2019)

    Chapter  Google Scholar 

  7. Cocoma-Ortega, J.A., Rojas-Perez, L.O., Cabrera-Ponce, A.A., Martinez-Carranza, J.: Overcoming the blind spot in CNN-based gate detection for autonomous drone racing. In: 2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS), pp. 253–259 (2019). https://doi.org/10.1109/REDUAS47371.2019.8999722

  8. Cruz-Martinez, C., Martínez-Carranza, J., Mayol-Cuevas, W.: Real-time enhancement of sparse 3D maps using a parallel segmentation scheme based on superpixels. J. Real Time Image Process. 14(3), 667–683 (2018). https://doi.org/10.1007/s11554-017-0707-2

    Article  Google Scholar 

  9. DeTone, D., Malisiewicz, T., Rabinovich, A.: Toward geometric deep slam (2017). CoRR. arXiv:1707.07410

  10. Jung, S., Hwang, S., Shin, H., Shim, D.H.: Perception, guidance, and navigation for indoor autonomous drone racing using deep learning. IEEE Robot. Autom. Lett. 3(3), 2539–2544 (2018). https://doi.org/10.1109/LRA.2018.2808368

    Article  Google Scholar 

  11. Kaufmann, E., Gehrig, M., Foehn, P., Ranftl, R., Dosovitskiy, A., Koltun, V., Scaramuzza, D.: Beauty and the beast: optimal methods meet learning for drone racing. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 690–696 (2019). https://doi.org/10.1109/ICRA.2019.8793631

  12. Kaufmann, E., Loquercio, A., Ranftl, R., Dosovitskiy, A., Koltun, V., Scaramuzza, D.: Deep drone racing: learning agile flight in dynamic environments (2018). CoRR. arXiv:1806.08548

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv preprint. arXiv:1412.6980

  14. Li, S., van der Horst, E., Duernay, P., De Wagter, C., de Croon, G.C.: Visual model-predictive localization for computationally efficient autonomous racing of a 72-gram drone. J Field Robotics. 37, 667–692 (2020). https://doi.org/10.1002/rob.21956

  15. Li, S., Ozo, M.M., De Wagter, C., de Croon, G.C.: Autonomous drone race: a computationally efficient vision-based navigation and control strategy. Robotics and Autonomous Systems. 133, 103621 (2020). https://doi.org/10.1016/j.robot.2020.103621

  16. Lima, R., Martinez-Carranza, J., Morales-Reyes, A., Mayol-Cuevas, W.: Toward a smart camera for fast high-level structure extraction. J. Real Time Image Process. 14(3), 685–699 (2018). https://doi.org/10.1007/s11554-017-0704-5

    Article  Google Scholar 

  17. Loquercio, A., Kaufmann, E., Ranftl, R., Dosovitskiy, A., Koltun, V., Scaramuzza, D.: Deep drone racing: from simulation to reality with domain randomization. IEEE Transactions on Robotics. 36(1), 1–14 (2020). https://doi.org/10.1109/TRO.2019.2942989

  18. Mansur, S., Habib, M., Pratama, G.N.P., Cahyadi, A.I., Ardiyanto, I.: Real time monocular visual odometry using optical flow: study on navigation of quadrotors UAV. In: 2017 3rd International Conference on Science and Technology-Computer (ICST), pp. 122–126 (2017). https://doi.org/10.1109/ICSTC.2017.8011864

  19. Moon, H., Martinez-Carranza, J., Cieslewski, T., Faessler, M., Falanga, D., Simovic, A., Scaramuzza, D., Li, S., Ozo, M., De Wagter, C., de Croon, G., Hwang, S., Jung, S., Shim, H., Kim, H., Park, M., Au, T.C., Kim, S.J.: Challenges and implemented technologies used in autonomous drone racing. Intell. Serv. Robot. 12(2), 137–148 (2019)

    Article  Google Scholar 

  20. More, V., Kumar, H., Kaingade, S., Gaidhani, P., Gupta, N.: Visual odometry using optic flow for unmanned aerial vehicles. In: 2015 International Conference on Cognitive Computing and Information Processing(CCIP), pp. 1–6 (2015). https://doi.org/10.1109/CCIP.2015.7100731

  21. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML’10, p. 807–814. Omnipress, Madison (2010)

  22. Rojas-Perez, L.O., Martinez-Carranza, J.: Deeppilot: a CNN for autonomous drone racing. Sensors 20(16), 4524 (2020)

    Article  Google Scholar 

  23. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)

  24. Stanford Artificial Intelligence Laboratory, et al.: Robotic operating system. https://www.ros.org

  25. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015). https://doi.org/10.1109/CVPR.2015.7298594

  26. Tateno, K., Tombari, F., Laina, I., Navab, N.: CNN-SLAM: real-time dense monocular SLAM with learned depth prediction. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6565–6574 (2017). https://doi.org/10.1109/CVPR.2017.695

  27. Wang, S., Clark, R., Wen, H., Trigoni, N.: Deepvo: Towards end-to-end visual odometry with deep recurrent convolutional neural networks. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 2043–2050 (2017). https://doi.org/10.1109/ICRA.2017.7989236

  28. Wu, Y., Liu, Y., Li, X.: Position estimation of camera based on unsupervised learning. In: Proceedings of the International Conference on Pattern Recognition and Artificial Intelligence, PRAI 2018, pp. 30–35. ACM (2018). https://doi.org/10.1145/3243250.3243254

  29. Yin, Z., Shi, J.: GeoNet: unsupervised learning of dense depth, optical flow and camera pose. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1983–1992 (2018). https://doi.org/10.1109/CVPR.2018.00212

Download references

Funding

This research was supported by Consejo Nacional de Ciencia y Tecnología (CONACYT) with Scholarship no. 719218.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception, design, literature search, data collection and analysis. The first draft of the manuscript was written by J. Arturo Cocoma-Ortega and all the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to J. Martinez-Carranza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cocoma-Ortega, J.A., Martinez-Carranza, J. A compact CNN approach for drone localisation in autonomous drone racing. J Real-Time Image Proc 19, 73–86 (2022). https://doi.org/10.1007/s11554-021-01162-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-021-01162-3

Keywords

Navigation