Skip to main content
Log in

Acceleration of simple linear iterative clustering using early candidate cluster exclusion

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

For superpixel segmentation that partitions an image into multiple homogeneous regions, simple linear iterative clustering (SLIC) has been widely used as a preprocessing step in various image processing and computer vision applications due to its outstanding performance in terms of speed and accuracy. However, determining the segment where each pixel belongs still requires tedious, repeated computation to measure the distance between the pixel and every candidate segment. In this paper, by applying the Cauchy–Schwarz inequality, we derive an approximate distance metric and a simple condition using the metric to get rid of unnecessary computational operations from the cluster inspection procedure. Candidate clusters can be excluded if they satisfy a condition requiring much less computation than the normal cluster inspection involving the distance measure. We refer to the condition as early candidate cluster exclusion (ECCE). To maximize the success rate of ECCE, we propose a method to predict the best cluster for each pixel. In the experimental results, we analyzed various properties of the proposed approximate distance metric, including the required computational operations and the success rate of ECCE. We confirmed that the proposed superpixel segmentation algorithm improves SLIC’s computational efficiency by 219 %, on average, without any degradation in segmentation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://ivrl.epfl.ch/supplementary_material/RK_SLICSuperpixels.

References

  1. Liu, Z., Zou, W., Meur, O.L.: Saliency tree: a novel saliency detection framework. IEEE Trans. Image Process. 23(5), 1937–1952 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  3. Pei, D., Li, Z., Ji, R., Sun, F.: Efficient semantic image segmentation with multi-class ranking prior. Comput. Vis. Image Underst. 120(3), 81–90 (2014)

    Article  Google Scholar 

  4. Buyssens, P., Gardin, I., Ruan, S., Elmoataz, A.: Eikonal-based region growing for efficient clustering. Image Vis. Comput. 32(12), 1045–1054 (2014)

    Article  Google Scholar 

  5. Ayvaci, A., Soatto, S.: Motion segmentation with occlusions on the superpixel graph. In: Proc. IEEE International Conference Computer Vision Workshops, pp. 727–734. Japan (2009)

  6. Mori, G., Ren, X., Efros, A.A., Malik, J.: Recovering human body configurations: combining segmentation and recognition. In: Proceedings IEEE Conference on Computer Vision Pattern Recognition, pp. 326–333 (2004)

  7. Kang, S.-J., Kang, N.-C., Kim, D.-H., Ko, S.-J.: A novel depth image enhancement method based on the linear surface model. IEEE Trans. Consum. Electron. 60(4), 710–718 (2014)

    Article  Google Scholar 

  8. Kuo T.-Y., Hsieh C.-H., Lo Y.-C.: Depth map estimation from a single video sequence. In: Proc. IEEE Internl. Symp. Consumer Electron., Hsinchu, Taiwan, pp. 103–104 (2013)

  9. Yang, F., Lu, H., Yang, M.-H.: Robust superpixel tracking. IEEE Trans. Image Process. 23(4), 1639–1651 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Papoutsakis, K.E., Argyros, A.A.: Integrating tracking with fine object segmentation. Image Vis. Comput. 31(10), 771–785 (2013)

    Article  Google Scholar 

  11. Kalinin, P., Sirota, A.: A graph based approach to hierarchical image over-segmentation. Comput. Vis. Image Underst. 130, 80–86 (2015)

    Article  Google Scholar 

  12. Choi, K.-S., Oh, K.-W.: Fast simple linear iterative clustering by early candidate cluster elimination. In: Pattern Recognition and Image Analysis, vol. 9117, Lecture Notes in Computer Science, pp. 579–586. Springer, Switzerland (2015)

  13. Ren, X., Malik, J.: Learning a classification model for segmentation. In: Proceedings of IEEE International Conference on Computer Vision, pp. 10–17 (2003)

  14. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  15. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  16. Levinshtein, A., Stere, A., Kutulakos, K., Fleet, D., Dickinson, S., Siddiqi, K.: Turbopixels: fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2290–2297 (2009)

    Article  Google Scholar 

  17. Bergh, M.V., Boix, X., Roig, G., Capitani, B., Gool, L.V.: Seeds: superpixels extracted via energy-driven sampling. In: Proceedings of European conference on computer vision, vol. 7578, pp. 13–26. Springer, Berlin (2012)

  18. Li, Y., Tan, Y., Yu, J.-G., Qi, S., Tian, J.: Kernel regression in mixed feature spaces for spatio-temporal saliency detection. Comput. Vis. Image Underst. 135, 126–140 (2015)

    Article  Google Scholar 

  19. Schick, A., Fischer, M., Stiefelhagen, R.: An evaluation of the compactness of superpixels. Pattern Recog. Lett. 43, 71–80 (2014)

    Article  Google Scholar 

  20. Shen, J., Du, Y., Wang, W., Li, X.: Lazy random walks for superpixel segmentation. IEEE Trans. Image Process. 23(4), 1451–1462 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and supervoxels in an energy optimization framework. In: Proc. European Conf. Comput. Vis., pp. 211–224 (2010)

  22. Liu, M.Y., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy rate superpixel segmentation, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., IEEE, pp. 2097–2104 (2011)

  23. Kim, K.-S., Zhang, D., Kang, M.-C., Ko, S.-J.: Improved simple linear iterative clustering superpixels. In: Proc. IEEE Internl. Symp. Consumer Electron., Hsinchu, Taiwan, pp. 259–260 (2013)

  24. Ren, C.Y., Reid, I.: gSLIC: A Real-time Implementation of SLIC Superpixel Segmentation. University of Oxford, Tech. rep. (2011)

  25. Borovec, J., Kybic, J.: jSLIC: superpixels in imagej. In: Computer Vision Winter Workshop, Czech Republic (2014)

  26. Wu, K.-S., Lin, J.-C.: Fast VQ encoding by an efficient kick-out condition. IEEE Trans. Circuits Syst. Video Technol. 10(1), 59–62 (2000)

    Article  Google Scholar 

  27. Bei, C.D., Gray, R.M.: An improvement of the minimum distortion encoding algorithm for vector quantization. IEEE Trans. Commun. COM–33(10), 1132–1133 (1985)

    Google Scholar 

  28. Hsieh, C.-H., Liu, Y.-J.: Fast search algorithms for vector quantization of images using multiple triangle inequalities and wavelet transform. IEEE Trans. Image Process. 9(3), 321–328 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Song, B.C., Ra, J.B.: A fast search algorithm for vector quantization using \(l_2\)-norm pyramid of codewords. IEEE Trans. Image Process. 11(1), 10–15 (2002)

    Article  MathSciNet  Google Scholar 

  30. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithm and measuring ecological statistics. In: Proc. IEEE International Conf. Computer Vision, Vancouver, BC, Canada, pp. 416–423 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Sun Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, KW., Choi, KS. Acceleration of simple linear iterative clustering using early candidate cluster exclusion. J Real-Time Image Proc 16, 945–956 (2019). https://doi.org/10.1007/s11554-016-0583-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-016-0583-1

Keywords

Navigation