Skip to main content
Log in

High-resolution, real-time 3D imaging with fringe analysis

  • Special Issue
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Real-time 3D imaging is becoming increasingly important in areas such as medical science, entertainment, homeland security, and manufacturing. Numerous 3D imaging techniques have been developed, but only a few of them have the potential to achieve realtime. Of these few, fringe analysis based techniques stand out, having many advantages over the rest. This paper will explain the principles behind fringe analysis based techniques, and will provide experimental results from systems using these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Baldi, A.: Phase unwrapping by region growing. Appl. Opt. 42, 2498–2505 (2003)

    Article  Google Scholar 

  2. Chyou, J.J., Chen, S.J., Chen, Y.K.: Two-dimensional phase unwrapping with a multichannel least-mean-square algorithm. Appl. Opt. 43, 5655–5661 (2004)

    Article  Google Scholar 

  3. Davis, J., Ramamoorthi, R., Rusinkiewicz, S.: Spacetime stereo: A unifying framework for depth from triangulation. IEEE Trans. Patt. Anal. Mach. Intell. 27(2), 1–7 (2005)

    Article  Google Scholar 

  4. Flynn, T.J.: Two-dimensional phase unwrapping with minimum weighted discontinuity. J. Opt. Soc. Am. A 14, 2692–2701 (1997)

    Article  Google Scholar 

  5. Geng, Z.J.: Rainbow 3D camera: new concept of high-speed three vision system. Opt. Eng. 35, 376–383 (1996)

    Article  Google Scholar 

  6. Ghiglia, D.C., Pritt, M.D.: Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software. Wiley, New York (1998)

  7. Ghiglia, D.C., Romero, L.A.: Minimum l p-norm two-dimensional phase unwrapping. J. Opt. Soc. Am. A 13, 1–15 (1996)

    Article  MathSciNet  Google Scholar 

  8. Guan, C., Hassebrook, L.G., Lau, D.L.: Composite structured light pattern for three-dimensional video. Opt. Express 11(5), 406–417 (2003)

    Article  Google Scholar 

  9. Guo, H., Huang, P.: 3D shape measurement by use of a modified fourier transform method. In: Proceedings SPIE, vol. 7066, p. 70660E (2008)

  10. Guo, H., He, H., Chen, M.: Gamma correction for digital fringe projection profilometry. Appl. Opt. 43, 2906–2914 (2004)

    Article  Google Scholar 

  11. Hornbeck, L.J.: Digital light rrocessing for high-brightness, high-resolution applications. In: Proceedings of SPIE, vol. 3013, pp. 27–40 (1997)

  12. Huang, P.S., Zhang, S.: Fast three-step phase shifting algorithm. Appl. Opt. 45, 5086–5091 (2006)

    Article  Google Scholar 

  13. Huang, P.S., Hu, Q., Jin, F., Chiang, F.P.: Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring. Opt. Eng. 38, 1065–1071 (1999)

    Article  Google Scholar 

  14. Huang, P.S., Zhang, C., Chiang, F.P.: High-speed 3D shape measurement based on digital fringe projection. Opt. Eng. 42(1), 163–168 (2002)

    Article  Google Scholar 

  15. Huang, P.S., Zhang, S., Chiang, F.P.: Trapezoidal phase-shifting method for three-dimensional shape measurement. Opt. Eng. 44, 123,601 (2005)

    Google Scholar 

  16. Hung, K.M., Yamada, T.: Phase unwrapping by regions using least-squares approach. Opt. Eng. 37, 2965–2970 (1998)

    Article  Google Scholar 

  17. Huntley, J.M.: Noise-immune phase unwrapping algorithm. Appl. Opt. 28, 3268–3270 (1989)

    Article  Google Scholar 

  18. Kakunai, S., Sakamoto, T., Iwata, K.: Profile measurement taken with liquid-crystal grating. Appl. Opt. 38(13), 2824–2828 (1999)

    Article  Google Scholar 

  19. Lei, S., Zhang, S.: Flexible 3-D shape measurement method using projector defocusing. Opt. Lett. 34(20), 3080–3082 (2009)

    Article  Google Scholar 

  20. Lei, S., Zhang, S.: Digital sinusoidal fringe generation: defocusing binary patterns vs focusing sinusoidal patterns. Opt. Laser Eng. 48, 561–569 (2010)

    Article  Google Scholar 

  21. Malacara, D. (ed.): Optical Shop Testing. Wiley & Sons Inc., New York (1992)

  22. Merráez, M.A., Boticario, J.G., Labor, M.J., Burton, D.R.: Agglomerative clustering-based approach for two dimensional phase unwrapping. Appl. Opt. 44, 1129–1140 (2005)

    Article  Google Scholar 

  23. Pan, B., Kemao, Q., Huang, L., Asundi, A.: Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry. Opt. Lett. 34(4), 2906–2914 (2009)

    Article  Google Scholar 

  24. Pan, J., Huang, P.S., Chiang, F.P.: Color phase-shifting technique for three-dimensional shape measurement. Opt. Eng. 45(12), 013,602 (2006)

    Google Scholar 

  25. Radiohead: House of cards. Online: http://www.youtube.com/watch?v=8nTFjVm9sTQ (2008)

  26. Rusinkiewicz, S., Hall-Holt, O., Levoy, M.: Real-time 3d model acquisition. ACM Trans. Graph. 21(3), 438–446 (2002)

    Article  Google Scholar 

  27. Salfity, M.F., Ruiz, P.D., Huntley, J.M., Graves, M.J., Cusack, R., Beauregard, D.A.: Branch cut surface placement for unwrapping of undersampled three-dimensional phase data: application to magnetic resonance imaging arterial flow mapping. Appl. Opt. 45, 2711–2722 (2006)

    Article  Google Scholar 

  28. Su, X., Zhang, Q.: Dynamic 3-D shape measurement method: a review. Opt. Laser Eng. 48, 191–204 (2010)

    Article  Google Scholar 

  29. Takeda, M., Mutoh, K.: Fourier transform profilometry for the automatic measurement of 3-D object shape. Appl. Opt. 22, 3977–3982 (1983)

    Article  Google Scholar 

  30. Zhang, L., Curless, B., Seitz, S.: Spacetime stereo: shape recovery for dynamic scenes. In: Proceedings of Computer Vison and Pattern Recognition, pp 367–374 (2003)

  31. Zhang, S.: Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques. Opt. Laser Eng. 48(2), 149–158 (2010)

    Article  Google Scholar 

  32. Zhang, S., Huang, P.S.: High-resolution, real-time three-dimensional shape measurement. Opt. Eng. 45, 123,601 (2006)

    Google Scholar 

  33. Zhang, S., Huang, P.S.: Novel method for structured light system calibration. Opt. Eng. 45, 083,601 (2006)

    Google Scholar 

  34. Zhang, S., Huang, P.S.: Phase error compensation for a three-dimensional shape measurement system based on the phase shifting method. Opt. Eng. 46(6), 063,601 (2007)

    Google Scholar 

  35. Zhang, S., Yau, S.T.: High-resolution, real-time 3d absolute coordinate measurement based on a phase-shifting method. Opt. Express 14(7), 2644–2649 (2006)

    Article  Google Scholar 

  36. Zhang, S., Yau, S.T.: Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector. Appl. Opt. 46(1), 36–43 (2007)

    Article  Google Scholar 

  37. Zhang, S., Yau, S.T.: High-speed three-dimensional shape measurement using a modified two-plus-one phase-shifting algorithm. Opt. Eng. 46(11), 113,603 (2007)

    Article  Google Scholar 

  38. Zhang, S., Royer, D., Yau, S.T.: Gpu-assisted high-resolution, real-time 3-D shape measurement. Opt. Express 14(20), 9120–9129 (2006)

    Article  Google Scholar 

  39. Zhang, S., Li, X., Yau, S.T.: Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction. Appl. Opt. 46, 50–57 (2007)

    Article  Google Scholar 

  40. Zhang, S., van der Weide, D., Oliver, J.: Superfast phase-shifting method for 3-D shape measurement. Opt. Express 18(9), 9684–9689 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank William Lohry for his contribution on rendering the facial data with Blender, and Victor Villagomez and Ying Xu for processing the data. All these individuals are undergraduate students working under the supervision of Dr. Zhang in the 3D Machine Vision Laboratory at Iowa State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karpinsky, N., Zhang, S. High-resolution, real-time 3D imaging with fringe analysis. J Real-Time Image Proc 7, 55–66 (2012). https://doi.org/10.1007/s11554-010-0167-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-010-0167-4

Keywords

Navigation