Skip to main content
Log in

Multi-level deep supervised networks for retinal vessel segmentation

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Changes in the appearance of retinal blood vessels are an important indicator for various ophthalmologic and cardiovascular diseases, including diabetes, hypertension, arteriosclerosis, and choroidal neovascularization. Vessel segmentation from retinal images is very challenging because of low blood vessel contrast, intricate vessel topology, and the presence of pathologies such as microaneurysms and hemorrhages. To overcome these challenges, we propose a neural network-based method for vessel segmentation.

Methods

A deep supervised fully convolutional network is developed by leveraging multi-level hierarchical features of the deep networks. To improve the discriminative capability of features in lower layers of the deep network and guide the gradient back propagation to overcome gradient vanishing, deep supervision with auxiliary classifiers is incorporated in some intermediate layers of the network. Moreover, the transferred knowledge learned from other domains is used to alleviate the issue of insufficient medical training data. The proposed approach does not rely on hand-crafted features and needs no problem-specific preprocessing or postprocessing, which reduces the impact of subjective factors.

Results

We evaluate the proposed method on three publicly available databases, the DRIVE, STARE, and CHASE_DB1 databases. Extensive experiments demonstrate that our approach achieves better or comparable performance to state-of-the-art methods with a much faster processing speed, making it suitable for real-world clinical applications. The results of cross-training experiments demonstrate its robustness with respect to the training set.

Conclusions

The proposed approach segments retinal vessels accurately with a much faster processing speed and can be easily applied to other biomedical segmentation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Al-Diri B, Hunter A, Steel D (2009) An active contour model for segmenting and measuring retinal vessels. IEEE Trans Med Imaging 28(9):1488–1497

    Article  PubMed  Google Scholar 

  2. Azzopardi G, Strisciuglio N, Vento M, Petkov N (2015) Trainable cosfire filters for vessel delineation with application to retinal images. Med Image Anal 19(1):46–57

    Article  PubMed  Google Scholar 

  3. Chen H, Qi XJ, Cheng JZ, Heng PA (2016) Deep contextual networks for neuronal structure segmentation. In: Thirtieth AAAI conference on artificial intelligence

  4. Cheng E, Du L, Wu Y, Zhu YJ, Megalooikonomou V, Ling H (2014) Discriminative vessel segmentation in retinal images by fusing context-aware hybrid features. Mach Vis Appl 25(7):1779–1792

    Article  Google Scholar 

  5. Ciresan D, Giusti A, Gambardella LM, Schmidhuber J (2012) Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in neural information processing systems, pp 2843–2851

  6. Fraz MM, Barman SA, Remagnino P, Hoppe A, Basit A, Uyyanonvara B, Rudnicka AR, Owen CG (2012) An approach to localize the retinal blood vessels using bit planes and centerline detection. Comput Methods Programs Biomed 108(2):600–616

    Article  CAS  PubMed  Google Scholar 

  7. Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA (2012) Blood vessel segmentation methodologies in retinal images-a survey. Comput Methods Programs Biomed 108(1):407–433

    Article  CAS  PubMed  Google Scholar 

  8. Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: International conference on artificial intelligence and statistics, pp 315–323

  9. Hoover A, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 19(3):203–210

    Article  CAS  PubMed  Google Scholar 

  10. Jiang X, Mojon D (2003) Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans Pattern Anal Mach Intell 25(1):131–137

    Article  Google Scholar 

  11. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  12. Kse C, kiBa C (2011) A personal identification system using retinal vasculature in retinal fundus images. Expert Syst Appl 38(11):13,670–13,681

    Google Scholar 

  13. Lam BS, Gao Y, Liew AWC (2010) General retinal vessel segmentation using regularization-based multiconcavity modeling. IEEE Trans Med Imaging 29(7):1369–1381

    Article  PubMed  Google Scholar 

  14. Lee CY, Xie S, Gallagher P, Zhang Z, Tu Z (2014) Deeply-supervised nets. arXiv preprint arXiv:1409.5185

  15. Li Q, Feng B, Xie L, Liang P, Zhang H, Wang T (2016) A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans Med Imaging 35(1):109–118

    Article  PubMed  Google Scholar 

  16. Liskowski P, Krawiec K (2016) Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369–2380

  17. Liu I, Sun Y (1993) Recursive tracking of vascular networks in angiograms based on the detection-deletion scheme. IEEE Trans Med Imaging 12(2):334–341

    Article  CAS  PubMed  Google Scholar 

  18. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

  19. Lupaşcu CA, Tegolo D, Trucco E (2010) Fabc: retinal vessel segmentation using adaboost. IEEE Trans Inf Technol Biomed 14(5):1267–1274

    Article  PubMed  Google Scholar 

  20. Marin D, Aquino A, Gegundez-Arias ME, Bravo JM (2011) A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans Med Imaging 30(1):146–158

    Article  PubMed  Google Scholar 

  21. Mendonca AM, Campilho A (2006) Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans Med Imaging 25(9):1200–1213

    Article  PubMed  Google Scholar 

  22. Miri MS, Mahloojifar A (2011) Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction. IEEE Trans Biomed Eng 58(5):1183–1192

    Article  PubMed  Google Scholar 

  23. Muhammad Moazam F, Paolo R, Andreas H, Bunyarit U, Rudnicka AR, Owen CG, Barman SA (2012) An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans Biomed Eng 59(9):2538–2548

    Article  Google Scholar 

  24. Niemeijer M, Staal J, Ginneken BV, Loog M, Abramoff MD (2004) Comparative study of retinal vessel segmentation methods on a new publicly available database. Proc SPIE Int Soc Opt Eng 5370:648–656

    Google Scholar 

  25. Owen CG, Rudnicka AR, Mullen R, Barman SA, Monekosso D, Whincup PH, Ng J, Paterson C (2009) Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (caiar) program. Invest Ophthalmol Vis Sci 50(5):2004–2010

    Article  PubMed  Google Scholar 

  26. Ricci E, Perfetti R (2007) Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans Med Imaging 26(10):1357–1365

    Article  PubMed  Google Scholar 

  27. Roychowdhury S, Koozekanani DD, Parhi KK (2015) Iterative vessel segmentation of fundus images. IEEE Trans Biomed Eng 62(7):1738–1749

    Article  PubMed  Google Scholar 

  28. Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM (2016) Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298

    Article  PubMed  Google Scholar 

  29. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  30. Soares JV, Leandro JJ, Cesar RM Jr, Jelinek HF, Cree MJ (2006) Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification. IEEE Trans Med Imaging 25(9):1214–1222

    Article  PubMed  Google Scholar 

  31. Staal J, Abràmoff MD, Niemeijer M, Viergever MA, Van Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509

    Article  PubMed  Google Scholar 

  32. Wang L, Lee CY, Tu Z, Lazebnik S (2015) Training deeper convolutional networks with deep supervision. arXiv preprint arXiv:1505.02496

  33. Xie S, Tu Z (2015) Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision, pp 1395–1403

  34. Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? In: Advances in neural information processing systems, pp 3320–3328

  35. You X, Peng Q, Yuan Y, Ym Cheung, Lei J (2011) Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recogn 44(10):2314–2324

    Article  Google Scholar 

  36. Zana F, Klein JC (2001) Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans Image Process 10(7):1010–1019

    Article  CAS  PubMed  Google Scholar 

  37. Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: Computer vision–ECCV 2014, Springer, pp 818–833

Download references

Acknowledgements

This work was supported by Fok Ying Tung Education Foundation (Grant 151068); National Natural Science Foundation of China (Grants 61332002); and Foundation for Youth Science and Technology Innovation Research Team of Sichuan Province (Grants 2016TD0018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

No animal or human experiments were conducted as part of this research.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, J., Zhang, L. Multi-level deep supervised networks for retinal vessel segmentation. Int J CARS 12, 2181–2193 (2017). https://doi.org/10.1007/s11548-017-1619-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-017-1619-0

Keywords

Navigation