Skip to main content
Log in

Differential geometry-based techniques for characterization of boundary roughness of pulmonary nodules in CT images

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Boundary roughness of a pulmonary nodule is an important indication of its malignancy. The irregularity of the shape of a nodule is represented in terms of a few diagnostic characteristics such as spiculation, lobulation, and sphericity. Quantitative characterization of these diagnostic characteristics is essential for designing a content-based image retrieval system and computer-aided system for diagnosis of lung cancer.

Methods

This paper presents differential geometry-based techniques for computation of spiculation, lobulation, and sphericity using the binary mask of the segmented nodule. These shape features are computed in 3D considering complete nodule.

Results

The performance of the proposed and competing methods is evaluated in terms of the precision, mean similarity, and normalized discounted cumulative gain on 891 nodules of Lung Image Database Consortium and Image Database Resource Initiative. The proposed methods are comparable to or better than gold standard technique. The reproducibility of proposed feature extraction techniques is evaluated using RIDER coffee break data set. The mean and standard deviation of the percent change of spiculation, lobulation, and sphericity are \(1.66\pm 2.36\), \(10.57\pm 11.63\), and \(6.27\pm 7.99\) %, respectively.

Conclusion

The prior works of computation of spiculation, lobulation, and sphericity require a set of four ground truths from radiologists and, hence, can not be used in practice. The proposed methods do not require ground truth information of nodules from radiologists, and hence, it can be used in real-life computer-aided diagnosis system for lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics. CA Cancer J Clin 63(1):11–30

    Article  PubMed  Google Scholar 

  2. Diederich S, Wormanns D, Semik M, Thomas M, Lenzen H, Roos N, Heindel W (2002) Screening for early lung cancer with low-dose spiral CT: prevalence in 817 asymptomatic smokers. Radiology 222(3):773–781

    Article  PubMed  Google Scholar 

  3. Ko JP, Naidich DP (2004) Computer-aided diagnosis and the evaluation of lung disease. J Thorac Imaging 19(3):136–155

    Article  PubMed  Google Scholar 

  4. Ost D, Fein AM, Feinsilver SH (2003) The solitary pulmonary nodule. N Engl J Med 348(25):2535–2542

    Article  PubMed  Google Scholar 

  5. Horsthemke WH, Raicu DS, Furst JD (2009) Characterizing pulmonary nodule shape using a boundary-region approach. In: Proceedings of SPIE medical imaging 2009, vol 7260. Florida, pp 72602Y–72602Y-9

  6. Raicu DS, Varutbangkul E, Cisneros JG, Furst JD, Channin DS, Armato SG III (2007) Semantics and image content integration for pulmonary nodule interpretation in thoracic computed tomography. In: Proceedings of SPIE medical imaging 2007, pp 65120S–65120S-12

  7. Dhara AK, Mukhopadhyay S, Alam N, Khandelwal N (2013) Measurement of spiculation index in 3D for solitary pulmonary nodules in volumetric lung CT images. In: SPIE medical imaging 2013: computer aided diagnosis, vol 8670. Florida, pp 86700K–86700K-6

  8. Teague MR (1980) Image analysis via the general theory of moments. J Opt Soc Am 70(8):920–930

    Article  Google Scholar 

  9. McNitt-Gray MF, Armato SG III, Meyer CR, Reeves AP, McLennan G, Pais RC, Freymann J, Brown MS, Engelmann RM, Bland PH, Laderach GE, Piker C, Guo J, Towfic Z, Qing PYD, Yankelevitz DF, Aberle DR, Beek EJR, MacMahon H, Kazerooni EA, Croft BY, Clarke LP (2007) The lung image database consortium LIDC data collection process for nodule detection and annotation. Acad Radiol 14(12):1464–1474

  10. Dhara AK, Mukhopadhyay S, Das Gupta R, Garg M, Khandelwal N (2015) A segmentation framework of pulmonary nodules in lung CT images. J Digit Imaging. doi:10.1007/s10278-015-9812-6

  11. Tsai DM, Hou HT, Su HJ (1999) Boundary-based corner detection using eigenvalues of covariance matrices. Pattern Recogn Lett 20(1):31–40

    Article  Google Scholar 

  12. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. ACM Siggr Comput Graph 21:163–169

    Article  Google Scholar 

  13. Koenderink JJ, van Doorn AJ (1992) Surface shape and curvature scales. Image Vis Comput 10(8):557–564

    Article  Google Scholar 

  14. Dong C, Wang G (2005) Curvatures estimation on triangular mesh. J Zhejiang Univ Sci 6(1):128–136

    Article  Google Scholar 

  15. Sladoje N, Nyström I, Saha PK (2005) Measurements of digitized objects with fuzzy borders in 2D and 3D. Image Vis Comput 23(2):123–132

    Article  Google Scholar 

  16. McNitt-Gray MF, Kim GH, Zhao B, Schwartz LH, Clunie D, Cohen K, Petrick N, Fenimore C, Lu ZJ, Buckler AJ (2015) Determining the variability of lesion size measurements from ct patient data sets acquired under “no change” conditions. Transl Oncol 8(1):55–64

    Article  PubMed Central  PubMed  Google Scholar 

  17. Armato SG III, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA, Kazerooni EA, MacMahon H, Beek EJR, Yankelevitz D, Biancardi AM, Bland PH, Brown MS, Engelmann RM, Laderach GE, Max D, Pais RC, Qing DPY, Roberts RY, Smith AR, Starkey A, Batra P, Caligiuri P, Farooqi A, Gladish GW, Jude CM, Munden RF, Petkovska I, Quint LE, Schwartz LH, Sundaram B, Dodd LE, Fenimore C, Gur D, Petrick N, Freymann J, Kirby J, Hughes B, Casteele AV, Gupte S, Sallam M, Heath MD, Kuhn MH, Dharaiya E, Burns R, Fryd DS, Salganicoff M, Anand V, Shreter U, Vastagh S, Croft BY, Clarke LP (2011) The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys 38(2):915–931

    Article  PubMed Central  PubMed  Google Scholar 

  18. Xu J, Napel S, Greenspan H, Beaulieu CF, Agrawal N, Rubin D (2012) Quantifying the margin sharpness of lesions on radiological images for content-based image retrieval. Med Phys 39(9):5405–5418

    Article  PubMed Central  PubMed  Google Scholar 

  19. Järvelin K, Kekäläinen J (2002) Cumulated gain-based evaluation of ir techniques. ACM Trans Inf Syst 20(4):422–446

    Article  Google Scholar 

  20. Seitz KA Jr, Giuca AM, Furst J, Raicu D (2012) Learning lung nodule similarity using a genetic algorithm. In: Proceedings of SPIE medical imaging 2012, vol 8315. San Deigo, USA, pp 831537–831537-7

  21. Han F, Wang H, Zhang G, Han H, Song B, Li L, Moore W, Lu H, Zhao H, Liang Z (2014) Texture feature analysis for computer-aided diagnosis on pulmonary nodules. J Digit Imaging 28(1):99–115

    Article  PubMed Central  Google Scholar 

  22. Kostis WJ, Reeves AP, Yankelevitz DF, Henschke CI (2003) Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images. IEEE Trans Med Imaging 22(10):1259–1274

    Article  PubMed  Google Scholar 

  23. Reeves AP, Chan AB, Yankelevitz DF, Henschke CI, Kressler B, Kostis WJ (2006) On measuring the change in size of pulmonary nodules. IEEE Trans Med Imaging 25(4):435–450

    Article  PubMed  Google Scholar 

  24. Teo BK, Seo Y, Bacharach SL, Carrasquillo JA, Libutti SK, Shukla H, Hasegawa BH, Hawkins RA, Franc BL (2007) Partial-volume correction in PET: validation of an iterative postreconstruction method with phantom and patient data. J Nucl Med 48(5):802–810

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Mukhopadhyay.

Ethics declarations

Conflicts of interest

This study was funded by Department of Electronics and Information Technology, Govt. of India, Grant Number 1(3)2009-ME&TMD and 1(2) / 2013-ME&TMD/ESDA, respectively. The authors declare that they have no conflict of interest. This work is done using a public lung CT image data set, and for this type of study, formal consent is not required. This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhara, A.K., Mukhopadhyay, S., Saha, P. et al. Differential geometry-based techniques for characterization of boundary roughness of pulmonary nodules in CT images. Int J CARS 11, 337–349 (2016). https://doi.org/10.1007/s11548-015-1284-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1284-0

Keywords

Navigation