Skip to main content

Advertisement

Log in

Calibration of the motor-assisted robotic stereotaxy system: MARS

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Background

The motor-assisted robotic stereotaxy system presents a compact and light-weight robotic system for stereotactic neurosurgery. Our system is designed to position probes in the human brain for various applications, for example, deep brain stimulation. It features five fully automated axes. High positioning accuracy is of utmost importance in robotic neurosurgery.

Methods

First, the key parameters of the robot’s kinematics are determined using an optical tracking system. Next, the positioning errors at the center of the arc—which is equivalent to the target position in stereotactic interventions—are investigated using a set of perpendicular cameras. A modeless robot calibration method is introduced and evaluated. To conclude, the application accuracy of the robot is studied in a phantom trial.

Results

We identified the bending of the arc under load as the robot’s main error source. A calibration algorithm was implemented to compensate for the deflection of the robot’s arc. The mean error after the calibration was 0.26 mm, the 68.27th percentile was 0.32 mm, and the 95.45th was 0.50 mm.

Conclusion

The kinematic properties of the robot were measured, and based on the results an appropriate calibration method was derived. With mean errors smaller than currently used mechanical systems, our results show that the robot’s accuracy is appropriate for stereotactic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ostertag C, Mennel H, Kiessling M (1980) Stereotactic biopsy of brain tumors. Surg Neurol 14(4): 275

    PubMed  CAS  Google Scholar 

  2. Ondo W, Jankovic J, Schwartz K, Almaguer M, Simpson R (1998) Unilateral thalamic deep brain stimulation for refractory essential tremor and Parkinson’s disease tremor. Neurology 51(4): 1063

    Article  PubMed  CAS  Google Scholar 

  3. Loddenkemper T, Pan A, Neme S, Baker K, Rezai A, Dinner D, Montgomery E Jr, Lueders H (2001) Deep brain stimulation in epilepsy. J Clin Neurophysiol 18(6): 514

    Article  PubMed  CAS  Google Scholar 

  4. Richardson D, Akil H (1977) Pain reduction by electrical brain stimulation in man. J Neurosurg 47(2): 184–194

    Article  PubMed  CAS  Google Scholar 

  5. Rasche D, Rinaldi P, Young R, Tronnier V (2006) Deep brain stimulation for the treatment of various chronic pain syndromes. Neurosurg Focus 21(6): E8

    Article  PubMed  Google Scholar 

  6. Allan L, Petit G, Brundin P (2010) Cell transplantation in Parkinson’s disease: problems and perspectives. Curr Opin Neurol 23(4): 426

    PubMed  Google Scholar 

  7. Martinez H, Gonzalez-Garza M, Moreno-Cuevas J, Caro E, Gutierrez-Jimenez E, Segura J (2009) Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients. Cytotherapy 11(1): 26–34

    Article  PubMed  CAS  Google Scholar 

  8. Bronstein J, Tagliati M, Alterman R, Lozano A, Volkmann J, Stefani A, Horak F, Okun M, Foote K, Krack P et al (2010) Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol (online)

  9. Schulder M (ed) (2003) Handbook of stereotactic and functional neurosurgery. Informa Healthcare

  10. Medtronic: Nexframe stereotactic system manual. Tech. rep., Medtronic Inc Minneapolis USA (2010). URL http://professional.medtronic.com/

  11. Bjartmarz H, Rehncrona S (2007) Comparison of accuracy and precision between frame-based and frameless stereotactic navigation for deep brain stimulation electrode implantation. Stereotact Funct Neurosurg 85: 235–242

    Article  PubMed  Google Scholar 

  12. Lanfranco A, Castellanos A, Desai J, Meyers W (2004) Robotic surgery: a current perspective. Ann Surg 239(1): 14

    Article  PubMed  Google Scholar 

  13. Kwoh YS, Hou J, Jonckheere E, Hayati S (1988) A robot with improved absolute positioning accuracy for ct guided stereotactic brain surgery. Biomed Eng IEEE Trans 35(2): 153–160

    Article  CAS  Google Scholar 

  14. Benabid A, Cinquin P, Lavalle S, Le Bas J, Demongeot J, De Rougemont J (1987) Computer-driven robot for stereotactic surgery connected to CT scan and magnetic resonance imaging. Stereotact Funct Neurosurg 50(1–6): 153–154

    Article  CAS  Google Scholar 

  15. Drake JM, Joy M, Goldenberg A, Kreindler D (1991) Computer-and robot-assisted resection of thalamic astrocytomas in children. Neurosurgery 29(1): 27

    Article  PubMed  CAS  Google Scholar 

  16. Morgan PS, Carter T, Davis S, Sepehri A, Punt J, Byrne P, Moody A, Finlay P (2003) The application accuracy of the pathfinder neurosurgical robot. In: International congress series CARS 2003. Computer assisted radiology and surgery. Proceedings of the 17th international congress and exhibition, pp 561–567

  17. Li QH, Zamorano L, Pandya A, Perez R, Gong J, Diaz F (2002) The application accuracy of the neuromate robot quantitative comparison with frameless and frame-based surgical localization systems. Comput Aided Surg 7(2): 90–98

    PubMed  Google Scholar 

  18. Medtech: Rosa neurosurgery robot. Tech. rep., Medtech SAS Montpellier France (2011). URL http://www.medtechsurgical.com/Products/ROSA

  19. Karas C, Chiocca A (2007) Neurosurgical robotics: a review of brain and spine applications. J Robot Surg 1(1): 39–43

    Article  Google Scholar 

  20. Craig JJ (2005) Introduction to robotics, mechanics and control. Pearson Prentice Hall, NJ, p 07458

  21. Heinig M, Govela MF, Gasca F, Dold C, Hofmann UG, Tronnier V, Schlaefer A, Schweikard A (2011) Mars—motor assisted robotic stereotaxy system. In: Proceedings of the 5th international IEEE EMBS conference on neural engineering, pp 334–337

  22. Kotsianos D, Wirth S, Fischer T, Euler E, Rock C, Linsenmaier U, Pfeifer KJ, Reiser M (2004) 3d imaging with an isocentric mobile c-arm. Eur Radiol 14: 1590–1595

    Article  PubMed  Google Scholar 

  23. Neitzel M, Mitschang P, Beresheim G (2004) Handbuch Verbundwerkstoffe: Werkstoffe, Verarbeitung, Anwendung. Hanser, Munich

  24. atracsys: Accutrack 250. Accessed 29 Aug 2011 (2011). URL http://atracsys.com/products/trackingsystems.php

  25. Mooring B, Driels M, Roth Z (1991) Fundamentals of manipulator calibration. Wiley, New York

    Google Scholar 

  26. Bai Y (2007) On the comparison of model-based and modeless robotic calibration based on a fuzzy interpolation method. Int J Adv Manuf Technol 31: 1243–1250

    Article  Google Scholar 

  27. Lilliefors H (1969) On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown. J Am Stat Assoc 64: 387–389

    Article  Google Scholar 

  28. Eljamel MS (2007) Validation of the pathfinder neurosurgical robot using a phantom. Int J Med Robot Comput Assisted Surg 3(4): 372–377. doi:10.1002/rcs.153

    Article  CAS  Google Scholar 

  29. Rachinger J, Bumm K, Wurm J, Bohr C, Nissen U, Dannenmann T, Buchfelder M, Iro H, Nimsky C (2007) A new mechatronic assistance system for the neurosurgical operating theatre: Implementation, assessment of accuracy and application concepts. Stereotact Funct Neurosurg 85(5): 249–255

    Article  PubMed  Google Scholar 

  30. Henderson JM, Holloway KL, Gaede SE, Rosenow JM (2004) The application accuracy of a skull-mounted trajectory guide system for image-guided functional neurosurgery. Comput Aided Surg 9(4): 155–160

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Heinig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinig, M., Hofmann, U.G. & Schlaefer, A. Calibration of the motor-assisted robotic stereotaxy system: MARS. Int J CARS 7, 911–920 (2012). https://doi.org/10.1007/s11548-012-0676-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-012-0676-7

Keywords

Navigation