Skip to main content
Log in

Automatic segmentation of pulmonary blood vessels and nodules based on local intensity structure analysis and surface propagation in 3D chest CT images

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Pulmonary nodules may indicate the early stage of lung cancer, and the progress of lung cancer causes associated changes in the shape and number of pulmonary blood vessels. The automatic segmentation of pulmonary nodules and blood vessels is desirable for chest computer-aided diagnosis (CAD) systems. Since pulmonary nodules and blood vessels are often attached to each other, conventional nodule detection methods usually produce many false positives (FPs) in the blood vessel regions, and blood vessel segmentation methods may incorrectly segment the nodules that are attached to the blood vessels. A method to simultaneously and separately segment the pulmonary nodules and blood vessels was developed and tested.

Method

A line structure enhancement (LSE) filter and a blob-like structure enhancement (BSE) filter were used to augment initial selection of vessel regions and nodule candidates, respectively. A front surface propagation (FSP) procedure was employed for precise segmentation of blood vessels and nodules. By employing a speed function that becomes fast at the initial vessel regions and slow at the nodule candidates to propagate the front surface, the front surface can be propagated to cover the blood vessel region with suppressed nodules. Hence, the resultant region covered by the front surface indicates pulmonary blood vessels. The lung nodule regions were finally obtained by removing the nodule candidates that are covered by the front surface.

Result

A test data set was assembled including 20 standard-dose chest CT images obtained from a local database and 20 low-dose chest CT images obtained from lung image database consortium (LIDC). The average extraction rate of the pulmonary blood vessels was about 93%. The average TP rate of nodule detection was 95% with 9.8 FPs/case in standard-dose CT image, and 91.5% with 10.5 FPs/case in low-dose CT image, respectively.

Conclusion

Pulmonary blood vessels and nodules segmentation method based on local intensity structure analysis and front surface propagation were developed. The method was shown to be feasible for nodule detection and vessel extraction in chest CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization (Feb 2011) Cancer, Fact sheet N deg 297. http://www.who.int/mediacentre/factsheets/fs297/en/

  2. Armato S, Giger M, MacMahon H (2001) Automated detection of lung nodules in CT images: preliminary results. Med Phys 28(8): 1552–1561

    Article  PubMed  Google Scholar 

  3. Sato Y, Westin C, Bhalerao A, Nakajima S, Shiraga N, Tamura S (2000) Tissue classification based on 3D local intensity structures for volume rendering. IEEE Trans Vis Comput Gr 6(2): 160–180

    Article  Google Scholar 

  4. Li Q, Sone S, Doi K (2003) Selective enhancement filters for nodules, vessels, and airway walls in two and three-dimensional CT images. Med Phys 30: 2040

    Article  PubMed  Google Scholar 

  5. Descoteaus M, Audette M, Chinzei K, Siddiqi K (2006) Bone enhancement filtering: application to sinus bone segmentation and simulation of pituitary surgery. Comput Aided Surg 11(5): 247–255

    Google Scholar 

  6. Retico A, Bagagli F, Camarlinghi N, Carpentieri C, Fantacci ME, Gori I (2009) A voxel-based neural approach (VBNA) to identify lung nodules in the ANODE09 study. Proc SPIE 7260: 72601S–172601S8

    Article  Google Scholar 

  7. Lee Y, Hara T, Fujita H, Itoh S, Ishigaki T (2001) Automated detection of pulmonary nodules in helical ct images based on an improved template- matching technique. IEEE Trans Med Imaging 20(7): 595–604

    Article  PubMed  CAS  Google Scholar 

  8. Murphy K, van Ginneken B, Schilham AMR, de Hoop BJ, Gietema HA, Prokop M (2009) A large scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification. Med Image Anal 13(5): 757–770

    Article  PubMed  CAS  Google Scholar 

  9. Takizawa H, Yamamoto S, Shiina T (2010) Recognition of pulmonary nodules in chest CT images Using 3-D deformable object models of different classes. Algorithms 10: 125–144

    Article  Google Scholar 

  10. Messay T, Hardie RC, Rogers SK (2010) A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Med Image Anal 14(3): 390–406

    Article  PubMed  Google Scholar 

  11. Armato S, Altman M, La Riviere PJ (2003) Automated detection of lung nodules in CT images: effect of image reconstruction algorithm. Med Phys 30(3): 461–472

    Article  PubMed  Google Scholar 

  12. Bellotti R, Carlo FD, Gargano G, Tangaro S, Cascio D, Catanzariti E, Cerello P, Cheran SC, Delogu P, Mitri ID, Fulcheri C, Grosso D, Retico A, Squarcia S, Tommasi E, Golosio B (2007) A CAD system for nodule detection in low-dose lung CTs based on region growing and a new active contour model. Med Phys 34(12): 4901–4910

    Article  PubMed  CAS  Google Scholar 

  13. Gurcan MN, Sahiner B, Petrick N, Chan H-P, Kazerooni EA, Cascade PN, Hadjiski L (2002) Lung nodule detection on chest computed tomography images: preliminary evaluation of a computer-aided diagnosis system. Med Phys 29(11): 2552–2558

    Article  PubMed  Google Scholar 

  14. Ozekes S, Osman O (2008) Computerized lung nodule detection using 3D feature extraction and learning based algorithms. J Med Syst 34(2): 185–194

    Article  Google Scholar 

  15. Cerello P, Cheran SC, Bagagli F, Bagnasco S, Bellotti R, Bolanos L, Catanzariti E, De Nunzio G, Fiorina E, Gargano G, Gemme G, Lopez Torres E, Masala G, Peroni C, Santoro M (2008) The channeler ant model: object segmentation with virtual ant colonies. IEEE NuclSci Symp 3147(3152): 3147–3152

    Google Scholar 

  16. Agam G, Armato S, Wu CH (2005) Vessel tree reconstruction in chest CT images with application to nodule detection. IEEE Trans Med Imaging 24(4): 486–499

    Article  PubMed  Google Scholar 

  17. van Ginneken B, Armato SG, de Hoop B, van de Vorst S, Duindam T, Niemeijer M, Murphy K, Schilham AMR, Retico A, Fantacci ME, Camarlinghi N, Bagagli F, Gori I, Hara T, Fujita H, Gargano G, Bellotti R, Tangaro SS, Bolanos L, Carlo FD, Megna R, Tangaro S, Bolanos L, Cerello P, Cheran SC, Torres EL, Prokop M (2010) Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: the ANODE09 study. Med Image Anal 14(6): 707–722

    Article  PubMed  Google Scholar 

  18. Yim PJ, Choyke PL, Summers RM (2000) Gray-scale skeletonization of small vessels in magnetic resonance angiography. IEEE Trans Med Img 19(6): 568–576

    Article  CAS  Google Scholar 

  19. Schmitt H, Grass M, Rasche V, Schramm O, Haehnel S, Sartor K (2002) An X-ray-based method for the determination of the contrast agent propagation in 3-d vessel structures. IEEE Trans Med Img 21(3): 251–262

    Article  CAS  Google Scholar 

  20. Sorantin E, Halmai C, Erdohelyi B, Palagyi K, Nyul L, Olle K, Geiger B, Lindbichler F, Friedrich G, Kiesler K (2002) Spiral-ct-based assessment of tracheal stenoses using 3-dskeletonization. IEEE Trans Med Img 21(3): 263–273

    Article  Google Scholar 

  21. Aylward S, Bullitt E (2002) Initialization noise, singularities and scale in height ridgetraversal for tubular object centerline extraction. IEEE Trans Med Img 21(2): 61–75

    Article  Google Scholar 

  22. Wu C, Agam G, Roy A, Armato S (2004) Regulated morphology approach to fuzzy shape analysis with application to blood vessel extraction in thoracic CT scans. Proc SPIE 5370: 1262–1270

    Article  Google Scholar 

  23. Raghupathi L, Lakare S (2009) A hybrid lung and vessel segmentation algorithm for computer aided detection of pulmonary embolism. Proc SPIE 7260(33): 1–9

    Google Scholar 

  24. Toledo R, Orriols X, Binefa X, Raveda P, Vitria J, Villanueva JJ (2000) Tracking elongated structures using statistical snakes. In: Proceedings of the IEEE conference on CVPR, pp 157–162

  25. Sarry L, Boire JY (2001) Three-dimensional tracking of coronary arteries from biplane angiographic sequences using parametrically deformable moodels. IEEE Trans Med Img 20(12): 1341–1351

    Article  CAS  Google Scholar 

  26. Quek F, Kirbas C (2001) Vessel extraction in medical images by wave propagation and traceback. IEEE Trans Med Img 20(2): 117–131

    Article  CAS  Google Scholar 

  27. Zhang HM, Bian ZZ, Jiang DZ, Yuan ZJ, Ye M (2003) Level set method for pulmonary vessels extraction. In: Proceedings of IEEE conference on image processing, vol 3. pp 1105–1108

  28. Sato Y, Nakajima S, Shiraga N, Atsumi H, Yoshida S, Koller T, Gerig G, Kikinis R (1998) 3d multiscale line filter for segmentation and visialization of curvilinear structures in medical images. Med Image Anal 2(2): 143–168

    Article  PubMed  CAS  Google Scholar 

  29. Krissian K, Malandain G, Ayache N (2000) Model based detection of tubular structures in 3D images. Comput Vis Image Underst 80(2): 130–171

    Article  Google Scholar 

  30. Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: Proceedings of MICCAI’ 98, vol 1496. pp 130–137

  31. Descoteaux M, Collins L, Siddiqi K (2008) A geometric flow for segmenting vasculature in proton-density weighted MRI. Med Image Anal 12(4): 497–513

    Article  PubMed  Google Scholar 

  32. Shikata H, Hoffman EA, Sonka M (2004) Automated segmentation of pulmonary vascular tree from 3D CT images. Proc SPIE 5369: 107–116

    Article  Google Scholar 

  33. Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics computer vision and material science. Cambridge University Press, UK

    Google Scholar 

  34. Kitasaka T, Mori K, Hasegawa J, Toriwaki J (2000) Lung area extraction from 3-D chest X-Ray CT images using the shape model generated by variable bezier surface. IEICE Trans Inf Syst J83-D-2(1): 165–174

    Google Scholar 

  35. Kitasaka T, Mori K, Hasegawa J, Toriwaki J (2002) A method for extraction of bronchus regions from 3D chest X-ray CT images by analyzing structural features of bronchus. Forma 17: 321–338

    Google Scholar 

  36. Lindeberg T (1993) On scale detection for differential operators. In: Proceedigns of 8th imagedinavian conference image analysis, pp 857–866

  37. Oda M, Kitasaka T, Mori K, Suenaga Y, Takayama T, Takabatake H, Mori M, Nawano S (2008) Digital bowel cleansing free detection method of colonic polyp from fecal tagging CT images. Acad Radiol 16(4): 486–494

    Article  Google Scholar 

  38. Chen B, Kitasaka T, Honma H, Takabatake H, Mori M, Natori H, Mori K (2010) Pulmonary blood vessel bifurcation enhancement filter with application to reduce false positive of nodule detection in 3D chest CT data. Int J CARS 5(Suppl 1): S95–S96

    Google Scholar 

  39. Feuerstein M, Kitasaka T Mori K (2009) Automated anatomical likelihood driven extraction and branching detection of aortic arch in 3-D chest CT. The Second International Workshop on Pulmonary Image Analysis, MICCAI, pp 49–60

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, B., Kitasaka, T., Honma, H. et al. Automatic segmentation of pulmonary blood vessels and nodules based on local intensity structure analysis and surface propagation in 3D chest CT images. Int J CARS 7, 465–482 (2012). https://doi.org/10.1007/s11548-011-0638-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-011-0638-5

Keywords

Navigation