Skip to main content
Log in

Diagnostic accuracy of dual-energy CT and virtual non-calcium techniques to evaluate bone marrow edema in vertebral compression fractures

  • COMPUTED TOMOGRAPHY
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate DECT diagnostic accuracy in the identification of vertebral bone marrow edema, using MRI as standard of reference.

Methods

This prospective institutional review board-approved study included 76 consecutive patients (29 males and 47 females; mean age 62.3, range 51–82 years) studied with DECT (90 kV and tin filter 150 kV) and MRI within 7 days. Three radiologists evaluated DECT (reader 1 and 2) and MRI images (reader 3). Diagnostic accuracy of the DECT maps (qualitative assessment) and of the CT numbers (quantitative assessment), interobserver and intraobserver agreements were calculated.

Results

MRI revealed 61 edematous vertebrae and 52 collapsed non-edematous vertebrae. The sensitivity, specificity, PPV and NPV and accuracy of the qualitative assessment of the DECT maps were 88.6, 92.3, 93.1, 87.3 and 90.3%, for reader 1, 90.2, 90.3, 91.6, 88.7 and 90.3, for reader 2, and 91.8, 90.4, 91.6, 90.4 and 91.1% for quantitative analysis, respectively. DECT numbers were significantly different between positive (mean − 23 HU, range − 189, 29 HU) and negative cases (mean − 126 HU, range − 321, − 66 HU) with p < 0.001. The ROC curve analysis revealed an AUC of 0.886 (95% confidence interval 0.722–0.913). The interobserver and intraobserver agreements were near perfect (k = 0.87 and k = 0.83, respectively).

Conclusion

DECT represents an accurate imaging technique for demonstrating bone marrow edema in vertebral compression fracture, if compared to MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DECT:

Dual-energy computed tomography

MRI:

Magnetic resonance imaging

PPV:

Positive predictive value

NPV:

Negative predictive value

ROC:

Receiver operator curve

AUC:

Area under the curve

TIRM:

Turbo inversion-recovery magnitude sequences

References

  1. Bierry G, Venkatasamy A, Kremer S et al (2014) Dual-energy CT in vertebral compression fractures: performance of visual and quantitative analysis for bone marrow edema demonstration with comparison to MRI. Skelet Radiol 43:485–492. https://doi.org/10.1007/s00256-013-1812-3

    Article  Google Scholar 

  2. Gehlbach SH, Bigelow C, Heimisdottir M et al (2000) Recognition of vertebral fracture in a clinical setting. Osteoporos Int J 11:577–582. https://doi.org/10.1007/s001980070078

    Article  CAS  Google Scholar 

  3. Papaioannou A, Watts NB, Kendler DL et al (2002) Diagnosis and management of vertebral fractures in elderly adults. Am J Med 113(3):220–228

    Article  Google Scholar 

  4. Karaca L, Yuceler Z, Kantarci M et al (2016) The feasibility of dual-energy CT in differentiation of vertebral compression fractures. Br J Radiol 89(1057):20150300. https://doi.org/10.1259/bjr.20150300

    Article  PubMed  Google Scholar 

  5. Heini PF, Wälchli B, Berlemann U (2000) Percutaneous transpedicular vertebroplasty with PMMA: operative technique and early results—a prospective study for the treatment of osteoporotic compression fractures. Eur Spine J 9(5):445–450

    Article  CAS  Google Scholar 

  6. Klazen CA, Lohle PN, de Vries J et al (2010) Vertebroplasty versus conservative treatment in acute osteoporotic vertebral compression fractures (Vertos II): an open-label randomised trial. Lancet 376(9746):1085–1092

    Article  Google Scholar 

  7. Old JL, Calvert M (2004) Vertebral compression fractures in the elderly. Am Fam Physician 69(1):111–116

    PubMed  Google Scholar 

  8. Wang CK, Tsai JM, Chuang MT et al (2013) Bone marrow edema in vertebral compression fractures: detection with dual-energy CT. Radiology 269:525–533. https://doi.org/10.1148/radiol.13122577

    Article  PubMed  Google Scholar 

  9. Tanigawa N, Komemushi A, Kariya S et al (2006) Percutaneous vertebroplasty: relationship between vertebral body bone marrow edema pattern on MR images and initial clinical response. Radiology 239:195–200. https://doi.org/10.1148/radiol.2391050073

    Article  PubMed  Google Scholar 

  10. Han IH, Chin DK, Kuh SU et al (2009) Magnetic resonance imaging findings of subsequent fractures after vertebroplasty. Neurosurgery 64:740–744. https://doi.org/10.1227/01.NEU.0000339120.41053.F1

    Article  PubMed  Google Scholar 

  11. Mathis JM, Barr JD, Belkoff SM et al (2001) Percutaneous vertebroplasty: a developing standard of care for vertebral compression fractures. AJNR Am J Neuroradiol 22:373–381

    CAS  PubMed  Google Scholar 

  12. Carberry GA, Pooler BD, Binkley N et al (2013) Unreported vertebral body compression fractures at abdominal multidetector CT. Radiology 268:120–126. https://doi.org/10.1148/radiol.13121632

    Article  PubMed  Google Scholar 

  13. Frellesen C, Azadegan M, Martin SS et al (2018) Dual-energy computed tomography-based display of bone marrow edema in incidental vertebral compression fractures: diagnostic accuracy and characterization in oncological patients undergoing routine staging computed tomography. Invest Radiol 53(7):409–416. https://doi.org/10.1097/RLI.0000000000000458

    Article  PubMed  Google Scholar 

  14. Vela JH, Wertz CI, Onstott KL et al (2017) Trauma imaging: a literature review. Radiol Technol 88(3):263–276 (Review)

    PubMed  Google Scholar 

  15. Karçaaltincaba M, Aktas A (2011) Dual-energy CT revisited with multidetector CT: review of principles and clinical applications. Diagn Interv Radiol 17:181–194. https://doi.org/10.4261/1305-3825.dir.3860-10.0

    Article  PubMed  Google Scholar 

  16. Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517. https://doi.org/10.1007/s00330-006-0517-6

    Article  PubMed  Google Scholar 

  17. Magarelli N, De Santis V, Marziali G et al (2018) Application and advantages of monoenergetic reconstruction images for the reduction of metallic artifacts using dual-energy CT in knee and hip prostheses. Radiol Med 123(8):593–600. https://doi.org/10.1007/s11547-018-0881-8

    Article  PubMed  Google Scholar 

  18. Horat L, Hamie MQ, Huber FA, Guggenberger R (2018) Optimization of monoenergetic extrapolations in dual-energy CT for metal artifact reduction in different body regions and orthopedic implants. Acad Radiol. https://doi.org/10.1016/j.acra.2018.06.008

    Article  PubMed  Google Scholar 

  19. Guggenberger R, Winklhofer S, Osterhoff G et al (2012) Metallic artefact reduction with monoenergetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels. Eur Radiol 22(11):2357–2364. https://doi.org/10.1007/s00330-012-2501-7

    Article  CAS  PubMed  Google Scholar 

  20. Wortman JR, Uyeda JW, Fulwadhva UP et al (2018) Dual-energy CT for abdominal and pelvic trauma. Radiographics 38(2):586–602. https://doi.org/10.1148/rg.2018170058 (Review)

    Article  PubMed  Google Scholar 

  21. Petritsch B, Kosmala A, Weng AM, Krauss B, Heidemeier A, Wagner R, Heintel TM, Gassenmaier T, Bley TA (2017) Vertebral compression fractures: third-generation dual-energy CT for detection of bone marrow edema at visual and quantitative analyses. Radiology 284(1):161–168. https://doi.org/10.1148/radiol.2017162165

    Article  PubMed  Google Scholar 

  22. Kaup M, Wichmann JL, Scholtz JE, Beeres M, Kromen W, Albrecht MH, Lehnert T, Boettcher M, Vogl TJ, Bauer RW (2016) Dual-energy CT-based display of bone marrow edema in osteoporotic vertebral compression fractures: impact on diagnostic accuracy of radiologists with varying levels of experience in correlation to MR imaging. Radiology 280(2):510–519. https://doi.org/10.1148/radiol.2016150472

    Article  PubMed  Google Scholar 

  23. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8(9):1137–1148

    Article  CAS  Google Scholar 

  24. Pache G, Bulla S, Baumann T et al (2012) Dose reduction does not affect detection of bone marrow lesions with dual-energy CT virtual noncalcium technique. Acad Radiol 19(12):1539–1545

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Foti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standard of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standard.

Informed consent

Informed consent was obtained from all patients enrolled for this prospective study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foti, G., Beltramello, A., Catania, M. et al. Diagnostic accuracy of dual-energy CT and virtual non-calcium techniques to evaluate bone marrow edema in vertebral compression fractures. Radiol med 124, 487–494 (2019). https://doi.org/10.1007/s11547-019-00998-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-019-00998-x

Keywords

Navigation