Skip to main content

Advertisement

Log in

Interobserver agreement in breast radiological density attribution according to BI-RADS quantitative classification

Riproducibilità interlettore del giudizio relativo alla densità radiologica secondo la classificazione quantitativa BI-RADS

  • Breast Radiology / Senologia
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

The authors sought to assess interobserver agreement in classifying mammography density according to quantitative Breast Imaging Reporting and Data System (BI-RADS) criteria.

Materials and methods

Six expert mammography readers were tested on a set of 100 mammograms. Interobserver agreement was determined according to the kappa statistic, adjusting for chance agreement, on a four-category (D1 vs. D2 vs. D3 vs. D4) or two-category (D1–2 vs. D3–4) basis. Agreement with a panel of 12 readers who had been tested on the same set in a previous study was also assessed.

Results

The six readers showed good agreement when compared in pairs [agreement on a four-category basis was substantial (kappa=0.60–0.80) for 13 pairs and almost perfect (kappa>0.80) for two pairs); agreement on a two-category basis was substantial for 12 pairs and almost perfect for three pairs) or compared with the panel (on a four-category basis, agreement was substantial for five of six readers and almost perfect for one; on a two-category basis, agreement was substantial for all readers).

Conclusions

In agreement with previous studies, visual classification of mammography density according to BI-RADS quantitative criteria was highly reproducible among readers; nevertheless, attribution to the “dense breast” (BI-RADS D3–4) category, which might be adopted as a determinant of different screening protocols (such as adjunct ultrasonography or yearly interval) varied among readers (range 6–15%). Controlled studies should be performed comparing visual with computer-density category attribution, the latter possibly being a better alternative due to its absolute reproducibility.

Riassunto

Obiettivo

Scopo del presente lavoro è stato verificare la riproducibilità interosservatore nel classificare la densità mammografica in base ai criteri della classificazione quantitative Breast Imaging Reporting and Data System (BI-RADS).

Materiali e metodi

Sei lettori esperti di mammografia sono stati testati su un set di 100 mammografie. La concordanza interosservatore è stata valutata mediante la statistica kappa, che aggiusta per la concordanza casuale, rispetto a quattro (D1 vs. D2 vs. D3 vs. D4) o due categorie (D1–2 vs. D3–4). È stata verificata anche la concordanza con un panel di 12 lettori che avevano valutato lo stesso set di mammografie in uno studio precedente.

Risultati

I sei lettori hanno mostrato una buona concordanza quando confrontati in coppie (concordanza sulla base di quattro categorie sostanziale (kappa=0,60–0,80) per 13 coppie e quasi perfetta (kappa>0,80) per due coppie; concordanza sulla base di due categorie sostanziale per 12 coppie, quasi perfetta per tre) o rispetto al panel (concordanza sulla base di quattro categorie sostanziale per 5/6 lettori e quasi perfetta per un lettore; concordanza sulla base di due categorie sostanziale per tutti i lettori).

Conclusioni

In accordo con precedenti studi la classificazione visuale della densità mammografica secondo i criteri BI-RADS è risultata altamente riproducibile tra i diversi lettori: ciò nonostante l’attribuzione della categoria seno denso (BI-RADS D3–4), che potrebbe essere adottata come determinante di protocolli di screening differenziati (aggiunta dell’ecografia, frequenza annuale) varia tra i lettori (in questo studio dal 6% al 15%). Necessitano studi controllati che confrontino la classificazione visuale con quella computerizzata, potendo quest’ultima essere una valida alternativa per la sua riproducibilità assoluta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. Wolfe JN (1976) Risk for breast cancer development determined by mammographic parenchimal pattern. Cancer 37:2486–2492

    Article  PubMed  CAS  Google Scholar 

  2. Ciatto S, Zappa M (1993) A prospective study of the value of mammographic patterns as indicators of breast cancer risk in a screening experience. Eur J Radiol 17:122–125

    Article  PubMed  CAS  Google Scholar 

  3. Brisson J, Diorio C, Masse B, (2003) Wolfe’s parenchymal pattern and percentage of the breast with mammographic densities: redundant or complementary classification? Cancer epidemiol Biomarkers Prev 12:728–732

    PubMed  Google Scholar 

  4. Vachon CM, Kuni CC, Anderson K et al (2000) Association of mammographic defined percent breast density with epidemiologic risk factors for breast cancer (United States). Cancer Causes Control 11:653–662

    Article  PubMed  CAS  Google Scholar 

  5. Boyd NF, Dite GS, Stone J et al (2002) Heritability of mammographic density, a risk factor for breast cancer. New engl J Med 347:886–894

    Article  PubMed  Google Scholar 

  6. Ursin G, Ma H, Wu H et al (2003) Mammographic density and breast cancer in three ethnic groups. Cancer epidemiol Biomarkers Prev 12:332–338

    PubMed  Google Scholar 

  7. Chen Z, Wuy AH, Gauderman WJ et al (2004) Does mammographic density reflect ethnic differences in breast cancer incidence rates? Am J epidemiol 159:140–147

    Article  PubMed  Google Scholar 

  8. Egan RL, Mosteller RC (1977) Breast cancer mammography patterns. Cancer 40:2087–2090

    Article  PubMed  CAS  Google Scholar 

  9. Ciatto S, Visioli C, Paci e, Zappa M (2004) Breast density as a determinant of interval cancer at mammographic screening. Br J Cancer 90:393–396

    Article  PubMed  CAS  Google Scholar 

  10. Peeters PH, Verbeek AL, Hendriks JH et al (1989) The occurrence of interval cancers in the Nijmegen screening programme. Br J Cancer 59:929–932

    Article  PubMed  CAS  Google Scholar 

  11. Young K, Wallis M, Blank R, Moss S (1997) Influence of number of views and mammographic film density on the detection of invasive cancers: results from the NHS Breast Screening Programme. Br J Radiol 70:482–488

    PubMed  CAS  Google Scholar 

  12. Buist DSM, Porter PL, Lehman C et al (2004) Factors contributing to mammography failure in women aged 40–49 years. J Natl Cancer Inst 96:1432–1440

    Article  PubMed  Google Scholar 

  13. Caumo F, Vecchiato F, Pellegrini M et al (2009) Analysis of interval cancers observed in an Italian mammography screening programme (2000–2006). Radiol Med 114:907–914

    Article  PubMed  CAS  Google Scholar 

  14. Caumo F, Brunelli S, Zorzi M et al (2011) Benefits of double reading of screening mammograms: retrospective study on a consecutive series. Radiol Med 116:575–583

    Article  PubMed  CAS  Google Scholar 

  15. American College of Radiology (2003) The ACR Breast Imaging Reporting and Data System (BI-RADS American College of Radiology, Reston

  16. Ciatto S, Bonardi R, Zappa M (2001) Impact of replacement hormone therapy in menopause on breast radiologic density and possible complications of mammography in the assessment of breast masses. Radiol Med 101:39–43

    PubMed  CAS  Google Scholar 

  17. Boyd NF, Wolfson C, Moskowitz M et al (1986) Observer variation in the classification pf mammographic parenchymal patterns. J Chroinic Dis 39:465–472

    Article  CAS  Google Scholar 

  18. Berg WA, Campassi C, Langenberg P, Sexton MJ (2000) Breast imaging reporting and data system: inter- and intraobserver variability in feature analysis and final assessment. AJR Am J Roentgenol 174:1769–1777

    PubMed  CAS  Google Scholar 

  19. Vachon CM, Sellers TA, Vierkant RA et al (2002) Case control study of increased mammographic breast density response to hormone replacement therapy. Cancer epidemiol Biomarkers Prev 11:1382–1388

    PubMed  CAS  Google Scholar 

  20. Zhou C, Chan HP, Petrick N et al (2001) Computerized image analysis estimation of breast density on mammograms. Med Phys 28:1056–1069

    Article  PubMed  CAS  Google Scholar 

  21. Ciatto S, Houssami N, Apruzzese A et al (2005) Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories. Breast 14:269–275

    Article  PubMed  CAS  Google Scholar 

  22. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  PubMed  CAS  Google Scholar 

  23. Rosselli Del Turco M, Mantellini P, Ciatto S et al (2007) Full-field digital versus screen-film mammography: comparative accuracy in concurrent screening cohorts. AJR Am J Roetgenol 189:860–866

    Article  Google Scholar 

  24. Pisano ED, Gatsonis C, Hendrick E et al (2005) Diagnostic performance of digital versus film mammography for breast-cancer screening. N engl J Med 353:1773–1783

    Article  PubMed  CAS  Google Scholar 

  25. Berg WA, Blume JD, Cormack JB et al (2008) Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. J Am Med Ass 299:2151–2163

    Article  CAS  Google Scholar 

  26. Corsetti V, Houssami N, Ferrari A et al (2008) Breast screening with ultrasound in women with mammography-negative dense breasts: evidence on incremental cancer detection and false positives, and associated cost. Eur J Cancer 44:539–544

    Article  PubMed  Google Scholar 

  27. Corsetti V, Houssami N, Ghirardi M et al (2011) evidence of the effect of adjunct ultrasound screening in women with mammography-negative dense breasts: Interval breast cancers at 1year follow-up. eur J Cancer 47:1021–1026

    Article  PubMed  Google Scholar 

  28. Rafferty E, Smith A, Niklason L (2009) Comparison of three methods of estimating breast density: BI-RADS density scores using full field digital mammography, breast tomosynthesis, and volumetric breast density. Proffered paper at Rad Soc North Am, Chicago, USA: ssM01

  29. Tuncbilek N, Sezer A, Uğr U et al (2009) Qualitative and quantitative analysis of fibroglandular tissue in the digital environment. Proffered paper at 10th National Congress of Breast Diseases, Izmir, Turkey

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bernardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardi, D., Pellegrini, M., Di Michele, S. et al. Interobserver agreement in breast radiological density attribution according to BI-RADS quantitative classification. Radiol med 117, 519–528 (2012). https://doi.org/10.1007/s11547-011-0777-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-011-0777-3

Keywords

Parole chiave

Navigation