Skip to main content
Log in

MDCT evaluation of the cardiac venous system

Valutazione mediante TCMS del sistema venoso coronarico

  • Cardiac Radiology/Cardioradiologia
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

This study was undertaken to evaluate the usefulness of electrocardiographically (ECG)-gated multidetector-row computed tomography (MDCT) for the assessment of the coronary venous system and detection of its anatomical variants, in order to identify those suitable for lead placement in cardiac resynchronisation therapy (CRT).

Materials and methods

We retrospectively examined the coronary MDCT studies of 89 patients (73 males, 16 females, average age 62.5 years, range 31–79) referred for suspected coronary artery disease. The cardiac venous system was assessed in all patients using three-dimensional (3D) postprocessing on a dedicated Vitrea workstation (five patients were excluded from the analysis).

Results

The coronary sinus, the great cardiac vein, the anterior interventricular vein and the middle cardiac vein were visualised in all cases. The lateral cardiac vein was visualised in 56/84 patients (67%) and the posterior cardiac vein in 63/84 patients (75%), never both missing. Along the postero-lateral wall of the left ventricle, only one branch was present in 44 cases, two branches in 21 cases and three or more branches in 19/84 cases (22%). Evaluation of the maximum diameter revealed that the lateral vein was dominant over the posterior vein in 20/40 cases. The small cardiac vein was visualised in 11/84 cases.

Conclusions

MDCT provides good depiction of the cardiac venous system, enabling the study of the vessel course and the identification of anatomical variants. Hence, this imaging technique could be proposed for the preoperative planning of CRT in selected patients.

Riassunto

Obiettivo

Scopo del nostro lavoro è valutare l’utilità della tomografia computerizzata multistrato (TCMS) nell’individuazione delle varianti anatomiche del sistema venoso coronarico al fine di riconoscere quelle ritenute più idonee per l’impianto dell’elettrocatetere necessario per la terapia di resincronizzazione cardiaca (CRT).

Materiali e metodi

Sono stati valutati retrospettivamente 89 pazienti consecutivi (73 maschi e 16 femmine, età media 62,5 anni, range di età 31–79), sottoposti ad angio—TCMS per sospetta patologia coronarica. Abbiamo valutato il sistema venoso coronarico in tutti i pazienti utilizzando una workstation dedicata Vitrea per il postprocessing 3D (5 pazienti sono stati esclusi).

Risultati

Il seno coronarico, la grande vena cardiaca, la vena interventricolare anteriore e la vena cardiaca media sono state visualizzate in tutti i pazienti. La vena cardiaca laterale è stata visualizzata in 56/84 casi (67%), mentre la vena cardiaca posteriore in 63/84 casi (75%); in nessun caso mancavano entrambe. Complessivamente in prossimità della parete postero-laterale del ventricolo sinistro è stato possibile visualizzare un solo ramo in 44 casi, due rami in 21 casi, tre o più rami in 19 casi. Nei pazienti che presentavano due rami per la parete posterolaterale del ventricolo sinistro, valutando il calibro massimo della vena, la vena laterale è stata considerata dominante sulla posteriore in 20/40 casi. La piccola vena cardiaca è risultata visualizzabile in 11/84 casi.

Conclusioni

La TCMS permette una buona visualizzazione delle vene coronariche, consentendo lo studio del decorso vasale e l’identificazione delle varianti anatomiche. Pertanto, questa tecnica di imaging potrebbe essere proposta nel planning dei pazienti da sottoporre alla CRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References/Bibliografia

  1. Cademartiri F, Runza G, Belgrano M (2005) Introduction to coronary imaging with 64-slice computed tomography. Radiol Med 110:16–41

    PubMed  Google Scholar 

  2. Pannu HK, Flohr TG, Corl FM (2003) Current concepts in multidetector row CT evaluation of the coronary arteries: principles, techniques, and anatomy. Radiographics 23:S111–S125

    Article  PubMed  Google Scholar 

  3. Schoepf UJ, Zwerner PL, Savino G (2007) Coronary CT angiography. Radiology 244:48–63

    Article  PubMed  Google Scholar 

  4. Halon DA, Rubinshtein R, Gaspar T (2008) Current status and clinical applications of cardiac multidetector computed tomography. Cardiology 109:73–84

    PubMed  Google Scholar 

  5. Woodard PK, Bhalla S, Javidan-Nejad C et al (2006) Non-coronary cardiac CT imaging. Semin Ultrasound CT MR 27:56–75

    Article  PubMed  Google Scholar 

  6. Hendel RC, Patel MR, Kramer CM et al (2006) ACCF/ACR/SCCT/SCMR/ASNC/NAS CI/SCAI/SIR 2006 Appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a Report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 48:1475–1497

    Article  PubMed  Google Scholar 

  7. Benini K, Marini M, Del Greco M et al (2008) Role of multidetector computed tomography in the anatomical definition of the left atrium-pulmonary vein complex in patients with atrial fibrillation. Personal experience and pictorial assay. Radiol Med 113:779–798

    Article  PubMed  CAS  Google Scholar 

  8. Cademartiri F, Runza G, Luccichenti G et al (2006) Coronary artery anomalies: incidence, pathophysiology, clinical relevance and role of diagnostic imaging. Radiol Med 111:376–391

    Article  PubMed  CAS  Google Scholar 

  9. Abraham WT, Fisher WG, Smith AL et al (2002) Cardiac resynchronization in chronic heart failure. N Engl J Med 346:1845–1853

    Article  PubMed  Google Scholar 

  10. Abraham WT, Hayes DL (2003) Cardiac resynchronization therapy for heart failure. Circulation 108:2596–2603

    Article  PubMed  Google Scholar 

  11. Gasparini G (2005) La stimolazione atrio-ventricolare e biventricolare nello scompenso cardiaco. It J Practice Cardiol 2:55–60

    Google Scholar 

  12. Ghio S, Constantin C, Klersy C et al (2004) Interventricular and intraventricular dyssynchrony are common in heart failure patients, regardless of QRS duration. Eur Heart J 25:571–578

    Article  PubMed  Google Scholar 

  13. Cazeau S, Leclercq C, Lavergne T et al (2001) Effects of multisite biventricular pacing with heart failure and intraventricular conduction delay. N Engl J Med 344:873–880

    Article  PubMed  CAS  Google Scholar 

  14. Bristow MR, Saxon LA, Boehmer J et al (2004) Cardiac resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 350:2140–2150

    Article  PubMed  CAS  Google Scholar 

  15. Pensa A, Favaro G, Cattaneo L (1996) Trattato di anatomia umana. Edizione UTET, Torino

    Google Scholar 

  16. Singh JP, Houser S, Heist EK et al (2005) The coronary venous anatomy: a segmental approach to aid cardiac resynchronization therapy. J Am Coll Cardiol 46:68–74

    Article  PubMed  Google Scholar 

  17. Cademartiri F, Marano R, Luccichenti G et al. (2004) Normal anatomy of the vessels of the heart with 16-row multislice Computed Tomography. Radiol Med 107:11–23

    PubMed  Google Scholar 

  18. Hewitt MJ, Chen JTT, Ravin CE et al (1981) Coronary Sinus atrial pacing: radiographic considerations. AJR Am J Roentgenol 136:323–328

    PubMed  CAS  Google Scholar 

  19. Vardas PE, Auricchio A, Blanc JJ et al (2007) Guidelines for cardiac pacing and cardiac resynchronization therapy. The Task Force for Cardiac Pacing and Cardiac Resynchronization Therapy of the European Society of Cardiology. Developed in collaboration with the European Heart Rhythm Association. Europace 9:959–998

    Article  PubMed  Google Scholar 

  20. Tada H, Kurosaki K, Naito S et al (2005) Three-dimensional visualization of the coronary venous system using multidetector row computed tomography. Circ J 69:165–170

    Article  PubMed  Google Scholar 

  21. Abbara S, Cury RC, Nieman K et al (2005) Noninvasive evaluation of cardiac veins with 16-MDCT angiography. AJR Am J Roentgenol 185:1001–1006

    Article  PubMed  Google Scholar 

  22. Christiaens L, Ardilouze P, Ragot S et al (2008) Prospective evaluation of the anatomy of the coronary venous system using multidetector row computed tomography. Int J Cardiol 126:204–208

    Article  PubMed  Google Scholar 

  23. Jongbloed MRM, Dirksen MS, Bax JJ et al (2005) Atrial fibrillation: multi-detector row CT of pulmonary vein anatomy prior to radiofrequency catheter ablation. Initial experience. Radiology 234:702–709

    Google Scholar 

  24. Mühlenbruch G, Koos R, Wildberger JE et al (2005) Imaging of the cardiac venous system: comparison of MDCT and conventional angiography. AJR Am J Roentgenol 185:1252–1257

    Article  PubMed  Google Scholar 

  25. Van de Veire NR, Schuijf JD, De Sutter J et al (2006) Non-invasive visualization of the cardiac venous system in coronary artery disease patients using 64-slice computed tomography. J Am Coll Cardiol 48:1832–1838

    Article  PubMed  Google Scholar 

  26. Lemola K, Mueller G, Desjardins B et al (2005) Topographic analysis of the coronary sinus and major cardiac veins by computed tomography. Heart Rhythm 2:694–699

    Article  PubMed  Google Scholar 

  27. Van de Veire NR, Marsan NA, Schuijf JD et al (2008) Noninvasive imaging of cardiac venous anatomy with 64-slice multi-slice computed tomography and noninvasive assessment of left ventricular dyssynchrony by 3-dimensional tissue synchronization imaging in patients with heart failure scheduled for cardiac resynchronization therapy. Am J Cardiol 101:1023–1029

    Article  PubMed  Google Scholar 

  28. Knackstedt C, Mühlenbruch G, Mischke K et al (2008) Imaging of the coronary venous system: validation of three-dimensional rotational venous angiography against dual-source computed tomography. Cardiovasc Intervent Radiol 31:1150–1158

    Article  PubMed  Google Scholar 

  29. Morin RL, Gerber TC, McCollough CH (2003) Radiation dose in computed tomography of the heart. Circulation 107:917–922

    Article  PubMed  Google Scholar 

  30. Picano E (2004) Informed consent and communication of risk from radiological and nuclear medicine examinations: how to escape from a communication inferno. BMJ 329:849–851

    Article  PubMed  Google Scholar 

  31. Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298:317–323

    Article  PubMed  CAS  Google Scholar 

  32. Bluemke DA, Achenbach S, Budoff M et al (2008) Noninvasive coronary artery imaging: magnetic resonance angiography and multidetector computed tomography angiography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention, and the Councils on Clinical Cardiology and Cardiovascular Disease in the Young. Circulation 118:586–606

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lumia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lumia, D., Laganà, D., Canì, A. et al. MDCT evaluation of the cardiac venous system. Radiol med 114, 837–851 (2009). https://doi.org/10.1007/s11547-009-0417-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-009-0417-3

Keywords

Parole chiave

Navigation