Skip to main content
Log in

Potato Crop Nitrogen Status Assessment to Improve N Fertilization Management and Efficiency: Past–Present–Future

  • Published:
Potato Research Aims and scope Submit manuscript

Abstract

Improving nitrogen use efficiency is important for the potato crop, because of its relatively low ability to take up available soil mineral nitrogen (N). Splitting of N fertilizer application is a suitable approach to better match N need and supply. In-season crop N monitoring methods are therefore required to support such strategies. This paper deals with the state of the art and potential development of characteristics, use and implementation of well known and more recent methods aimed to assess in-season potato Crop Nitrogen Status (CNS). A short overview of this concept is given for the potato crop. The most important and available methods for CNS assessment are evaluated for their accuracy, precision, sensitivity, sensibility and feasibility. These are: the petiole sap nitrate concentration test; the leaf chlorophyll concentration measurement using a hand-held chlorophyll meter; the measurement of crop light reflectance through a hand-held radiometer using passive sensors. More recent methods still under investigation based on near, ground-based, air-borne or space-borne remote sensing are discussed for their scientific and practical interest in the near future. The current and potential use and implementation of these methods into decision support systems for potato N fertilization management aimed at improving the potato crop nitrogen use efficiency are analysed by: comparing relative and raw data; establishing threshold values of CNS; and combining or integrating the CNS values into models dedicated to N recommendation or to crop growth simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alva A (2004) Potato nitrogen management. J Veg Crop Prod 10(1):97–130

    Article  Google Scholar 

  • Baret F, Guyot G, Major DJ (1989) TSAVI: A vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In: Proc IGARRS 1989 Can Symp Remote Sensing, 12th, Vancouver, BC, Canada, 10–14 July 1989, pp 1355–1358

  • Barnes EM, Clarke TR, Richards SE, Colaizzi PD, Haberland J, Kostrzewski M, Waller P, Choi C, Riley E, Thompson T, Lascano RJ, Li H, Moran MS (2000a) Coincident detection of crop water stress, nitrogen status and canopy density using ground-based multispectral data. Proc 5th Int Conf on Precision Agric, Bloomington, MN 16–19 July 2000. ASA, CSSA, SSSA, Madison, WI 53711. Unpaginated CD.

  • Barnes PW, Searles PS, Ballaré CL, Ryel RJ, Caldwell MM (2000b) Non-invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: field and laboratory studies. Physiol Plant 109:274–283

    Article  CAS  Google Scholar 

  • Bausch WC, Duke HR (1996) Remote sensing of plant nitrogen status in corn. Transactions of the ASAE 39:1869–1875

    Google Scholar 

  • Bélanger G, Walsh JR, Richard JE, Milburn PH, Ziadi N (2001) Critical nitrogen curve and nitrogen nutrition index for potato in eastern Canada. Am J Potato Res 78:355–364

    Google Scholar 

  • Blackmer TM, Schepers JS, Varvel GE (1994) Light reflectance compared with other nitrogen stress measurements in corn leaves. Agron J 86:934–938

    Google Scholar 

  • Blackmer TM, Schepers JS, Varvel GE, Walter-Shea EA (1996) Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agron J 88:1–5

    CAS  Google Scholar 

  • Booij R, Uenk D (2004) Crop-reflection-based DSS for supplemental nitrogen dressings in potato production. In: Haverkort AJ, MacKerron DKL (eds) Decision support systems in potato production: Bringing models to practice. Wageningen, Wageningen, the Netherlands, pp 47–53

    Google Scholar 

  • Booij R, Valenzuela JL, Aguilera C (2000) Determination of CNS using non-invasive methods. In: Haverkort AJ, MacKerron DKL (eds) Management of nitrogen and water in potato production. Wageningen, Wageningen, the Netherlands, pp 72–82

    Google Scholar 

  • Campbell PKE, Middleton EM, McMurtry JE, Corp LA, Chapelle EW (2007) Assessment of vegetation stress using reflectance or fluorescence measurements. J Environ Qual 36:832–845

    Article  PubMed  CAS  Google Scholar 

  • Cartelat A, Cerovic ZG, Goulas Y, Meyer S, Lelarge C, Prioul JL, Barbottin A, Jeuffroy MH, Gate P, Agati G, Moya I (2005) Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crops Res 91:35–49

    Article  Google Scholar 

  • Casa R, Jones HG (2003) Field-based multi-angular remote sensing for plant stress monitoring. In: Stafford J, Werner A (eds) Precision Agriculture. Wageningen, the Netherlands, pp 109–114

    Google Scholar 

  • Casa R, Jones HG (2004) Retrieval of crop canopy properties: a comparison between model inversion from hyper-spectral data and image classification. Int J Remote Sensing 25:1119–1130

    Article  Google Scholar 

  • Casa R, Pieruccetti F, Sgueglia G, Lo Cascio B (2005) Potato tuber improvement through nitrogen management optimisation: review of methodologies. Acta Hort 684:65–71

    Google Scholar 

  • Cerovic ZG, Ounis A, Cartelat A, Latouche G, Goulas Y, Meyer S, Moya I (2002) The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant, Cell, Environ 25:1663–1676

    Article  CAS  Google Scholar 

  • Chen JM, Liu J, Leblanc SG, Lacaze R, Roujean JL (2003) Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption. Rem Sens Environ 84:516–525

    Article  Google Scholar 

  • Clevers JGPW (1989) The application of a weighted infrared-red vegetation index for estimating Leaf Area Index by correcting for soil moisture. Rem Sens Environ 29:25–37

    Article  Google Scholar 

  • Duchenne T, Machet JM, Martin M (1997) Diagnosis of potato nitrogen status. In: Lemaire G (ed) Diagnosis of the nitrogen status in crops. Springer-Verlag, Berlin, Germany, pp 119–130

    Google Scholar 

  • Denuit JP, Olivier M, Goffaux MJ, Herman JL, Goffart JP, Destain JP, Frankinet M (2002) Management of nitrogen fertilization of winter wheat and potato crops using the chlorophyll meter for crop nitrogen status assessment. Agronomie 22:847–853

    Article  Google Scholar 

  • Dilz K (1987) Efficiency of uptake and utilization of fertilizer nitrogen by plants. In: Jenkinson DS, Smith KA (eds) Nitrogen efficiency in agricultural soils. Elsevier, London and New York, pp 1–26

    Google Scholar 

  • Donatelli M, Bindi M, Porter JR, van Ittersum MK (2002) Process simulation and application of cropping system models: first special issue with selected papers from the 2nd international symposium on modelling cropping systems, 16–18 July 2001, Florence, Italy. Eur J Agron 18:1–185

    Article  Google Scholar 

  • Errebhi M, Rosen CJ, Gupta SC, Birong DE (1998a) Potato yield response and nitrate leaching as influenced by nitrogen management. Agron J 90:10–15

    Google Scholar 

  • Errebhi M, Rosen CJ, Birong DE (1998b) Calibration of a petiole sap nitrate test for irrigated Russet Burbank Potato. Commun. Soil Sci Plant Anal 29(1&2):23–35

    Article  CAS  Google Scholar 

  • Filella I, Serrano I, Serra J, Penuelas J (1995) Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analyses. Crop Sci 35:1400–1405

    Google Scholar 

  • Fitzgerald GJ, Rodriguez D, Christensen LK, Belford R, Sadras VO, Clarke TR (2006) Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precision Agric 7:233–248

    Article  Google Scholar 

  • Gardner BR, Jones JP (1975) Petiole analysis and the nitrogen fertilization of Russet Burbank potatoes. Am Potato J 52:195–200

    Article  Google Scholar 

  • Gianquinto G, Sambo P, Borsato D, Delate K (2003a) The canopy reflectance as a tool for “dynamically optimizing” the nitrogen supply in tomato crop: a methodological approach. HortScience 38(5):767

    Google Scholar 

  • Gianquinto G, Sambo P, Bona M (2003b) The use of SPAD-502 chlorophyll meter for dynamically optimizing the nitrogen supply in potato crop: a methodological approach. Acta Hort 607:197–204

    Google Scholar 

  • Gianquinto G, Goffart JP, Olivier M, Guarda G, Colauzzi M, Dalla Costa L, Delle Vedove G, Vos J, MacKerron DKL (2004) The use of hand-held chlorophyll meters as a tool to assess the nitrogen status and to guide nitrogen fertilization of potato crop. Potato Res 47:35–80

    Article  Google Scholar 

  • Gitelson AA, Gritz U, Merzlyak MN (2003) Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J Plant Physiol 160:271–282

    Article  PubMed  CAS  Google Scholar 

  • Goffart JP (2005) Crop light reflectance to assess potato crop nitrogen status. In: Abstracts of papers and posters, vol I, 16th Triennial Conference of the EAPR, July 17–22, 2005, Bilbao, Basque Country, Spain, pp. 342–345

  • Goffart JP, Olivier M (2004) Management of N-fertilization of the potato crop using total N-advice software and in-season chlorophyll meter measurements. In: Haverkort AJ, MacKerron DKL (eds) Decision support systems in potato production: Bringing models to practice. Wageningen, Wageningen, the Netherlands, pp 68–83

    Google Scholar 

  • Goffart JP, Olivier M, MacKerron DKL, Postma R, Johnson P (2000) Spatial and temporal aspects of sampling of potato crops for nitrogen analysis. In: Haverkort AJ, MacKerron DKL (eds) Management of nitrogen and water in potato production. Wageningen, Wageningen, The Netherlands, pp 83–102

    Google Scholar 

  • Goffart JP, Olivier M, Destain JP, Frankinet M (2002) Stratégie de gestion de la fertilisation azotée de la pomme de terre de consummation. Centre de Recherches Agronomiques de Gembloux (ed.), Gembloux, Belgium, pp. 118. web site: http://www.cra.wallonie.be)

  • Goffart JP, Olivier M, Destain JP (2005) Presentation of a Decision Support System (DSS) for nitrogen management in potato production to improve the use of resources. In: Haverkort AJ, Struik PC (eds.) Potato in Progress—science meets practice. Wageningen, the Netherlands, pp. 134–142

  • Goulas Y, Cerovic ZG, Cartelat A, Moya I (2004) Dualex: a new instrument for field measurements of epidermal UV-absorbance by chlorophyll fluorescence. Appl Opt 43:4488–4496

    Article  PubMed  CAS  Google Scholar 

  • Greenwood DJ, Neeteson JJ, Draycott A (1986) Quantitative relationships for the dependence of growth rate of arable crops on their nitrogen content, dry weight and aerial environment. Plant Soil 91:281–301

    Article  Google Scholar 

  • Greenwood DJ, Lemaire J, Gosse G, Cruz P, Draycott A, Neeteson JJ (1990) Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann Bot 66:425–436

    CAS  Google Scholar 

  • Guiot J, Goffart JP, Destain JP (1993) Le dosage des nitrates dans le sol. Bull des Rech. Agron de Gembloux 27:61–74

    Google Scholar 

  • Haase NU, Goffart JP, MacKerron DKL, Young MW (2000) Determination of CNS using invasive methods. In: Haverkort AJ, MacKerron DKL (eds) Management of nitrogen and water in potato production. Wageningen, Wageningen, the Netherlands, pp 55–71

    Google Scholar 

  • Haboudane D, Miller JR, Tremblay N, Zarco-Tejada PJ, Dextrase L (2002) Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Rem Sens Environ 81:416–426

    Article  Google Scholar 

  • Haboudane D, Tremblay N, Miller JR, Vigneault P (2008) Remote estimation of crop chlorophyll content using spectral indices derived from hyper-spectral data. IEEE Trans Geosci Remote Sens 46(2):423–437

    Article  Google Scholar 

  • Hatfield JL, Gitelson AA, Schepers JS, Walthall CL (2008) Application of spectral remote sensing for agronomic decisions. Agron J 100:S–117–S-131

    Article  CAS  Google Scholar 

  • Hofman G, Salomez J (2000) Nitrogen decision support systems in potato production. In: Haverkort AJ, MacKerron DKL (eds) Management of nitrogen and water in potato production. Wageningen, Wageningen, the Netherlands, pp 219–232

    Google Scholar 

  • Hofman G, Baele H, Salomez J, Pannier J (1995) Bladsteeltjesonderzoek. In: Bries J, Vandendriessche H, Geypens M (eds) Bemesting en beregening van aardappelen in functie van opbrengst en kwaliteit. IWONL, Brussels, Belgium, pp 128–142

    Google Scholar 

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Rem Sens Environ 25:295–309

    Article  Google Scholar 

  • Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004) Review of methods for in situ leaf area index determination. Part I. Theories, sensors and hemispherical photography. Agric For Meteorol 121:19–35

    Article  Google Scholar 

  • Jones JP, Painter CG (1974) Tissue analysis. A guide to nitrogen fertilization of Idaho Russet Burbank potatoes. University of Idaho Coll. Agric. Extension Service, Bingham County, Idaho, Current Information Series no 240, pp 1–4

  • Jongschaap REE (2006a) Integrating crop growth simulation and remote sensing to improve resource use efficiency in farming systems. PhD Thesis, Wageningen University, Wageningen, the Netherlands, pp. 130

  • Jongschaap REE (2006b) Run-time calibration of simulation models by integrating remote sensing estimates of leaf area index and canopy nitrogen. Eur J Agron 24:328–336

    Google Scholar 

  • Jongschaap REE, Booij R (2004) Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status. Int J Appl Earth Obs Geoinf 5:205–218

    Article  Google Scholar 

  • Laurent F, Lancelot F (1999) NO3 petiole sap test: calibration and validation of threshold values to diagnose crop N status and decide a second N application. EAPR Abstracts of Conference Papers and Posters. 14th Triennial Conference of the European Association for Potato Research, Sorrento, Italy, pp 462–463

  • Lemaire G (1997) Diagnosis of the nitrogen status in crops. Springer, Berlin, Heidelberg, p 239

    Google Scholar 

  • Lemaire G, Gastal F, Plenet D (1995) Dynamics of N uptake and N distribution in plant canopies. Use of crop N status index in crop modelling. In: Lemaire G and Burns IG (eds), Diagnostic procedures for crop N management, Poitiers (France), 22–23 November 1995, INRA Les Colloques, no 82, pp 15–29

  • Lemaire G, François C, Dufrene E (2004) Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Rem Sens Environ 89:1–28

    Article  Google Scholar 

  • Liang S, Strahler AS (2000) Land surface bidirectional reflectance distribution function (BRDF): Recent advances and future prospects. Rem Sens Rev 18:2–4

    Google Scholar 

  • Link A, Reusch S (2006) Implementation of site-specific nitrogen application—status and development of the YARA N-Sensor. In: Nordic Association of Agricultural Scientists NJF Report 390. Precision technology in crop production implementation and benefits. Book of extended abstracts, Lillehammer, Norway, 7–8 November 2006, 2(8):37–41

  • Link A, Panitzki M, Reusch S, Lammel J (2002) Hydro-N-Sensor: tractor-mounted remote sensing for variable nitrogen fertilization. Proceedings of the 6th International Conference on Precision Agriculture and other precision resources Management. Minneapolis, MN, USA July 14–17.

  • Machet JM, Dubrulle P, Louis P (1990) AZOBIL: a computer program for fertilizer N recommendations based on a predictive balance sheet method. Proceedings of 1st Congress of the European Society of Agronomy, 5–7 December 1990, Paris, France. S2:21–22

  • MacKerron DKL (2000) Perspectives for use in practice—How can assessment of plant and CNS be used in practice. In: Haverkort AJ, MacKerron DKL (eds) Management of nitrogen and water in potato production. Wageningen, Wageningen, the Netherlands, pp 103–110

    Google Scholar 

  • MacKerron DKL, Young W, Davies HV (1995) A critical assessment of the value of petiole sap analysis in optimising the nitrogen nutrition of the potato crop. Plant Soil 172:247–260

    Article  CAS  Google Scholar 

  • MacMurdo W, Prange RK, Veinot R (1988) Nitrogen fertilization and petiole tissue testing in production of whole seed tubers of the potato cultivars Sebago and Atlantic. Can J Plant Sci 68:901–905

    Article  Google Scholar 

  • Markwell J, Osterman JC, Mitchell JL (1995) Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth Res 46:467–472

    Article  CAS  Google Scholar 

  • Millard P, MacKerron DKL (1986) The effects of nitrogen application on growth and nitrogen distribution within the potato canopy. Ann Appl Biol 109:427–437

    Article  Google Scholar 

  • Millard P, Marshall B (1986) Growth, nitrogen uptake and partitioning within the potato (Solanum tuberosum L.) crop, in relation to nitrogen application. J Agric Sci 107:421–429

    Google Scholar 

  • Mullen RW, Freeman KW, Raun WR, Johnson JV, Stone ML, Solie JB (2003) Identifying an in-season response index and the potential to increase wheat yield with nitrogen. Agron J 95:347–351

    Article  Google Scholar 

  • Nitsch A, Varis E (1991) Nitrate estimates using the Nitrachek test for precise N-fertilization during plant growth and, after harvest, for quality testing potato tubers. Potato Res 34:95–105

    Article  Google Scholar 

  • Olivier M, Goffart JP (2002) Chlorophyll meter used as decision tool to manage nitrogen fertilization in potato crop. Abstracts EAPR Triennial Conf., 15th, Hamburg, Germany, 14–19 July 2002. Saatgut-Treuhandverwaltungs Gmbh, Bonn, Germany, 68

  • Olivier M, Goffart JP, Sinnaeve G, Dardenne P (1999) Evaluation of invasive and non-invasive methods to assess the nitrogen status of the potato crop in the course of the season. In: Abstracts EAPR Triennial Conf., 14th, Sorrento, Italy, 2–7 May 1999. Assessorato Agricoltura, Regione Campania, Sorrento, Italy, pp 134–135

  • Olivier M, Goffart JP, Frankinet M (2001) Two methods of quick assessment of potato crop nitrogen status: Working frame and threshold values leading to N fertilizer supplement during growing period. In: Abstracts Nitrogen Workshop, 11th, Reims, France, 9–12 Sept 2001, INRA, Laon, France, pp 503–504

  • Olivier M, Goffart JP, Ledent JF (2006) Threshold values for chlorophyll meter as decision tool for nitrogen management of potato. Agron J 98:496–506

    Article  CAS  Google Scholar 

  • Pena-Yewtukhiw EM, Schwab GJ, Grove JH, Murdock LW, Johnson JT (2008) Spatial analysis of early wheat canopy normalized difference vegetative index: determining appropriate observation scale. Agron J 100:454–462

    Article  Google Scholar 

  • Perry EM, Roberts DA (2008) Sensitivity of narrow-band and broad-band indices for assessing nitrogen availability and water stress in an annual crop. Agron J 100:1211–1219

    Article  CAS  Google Scholar 

  • Prasad M, Spiers TM (1985) A rapid nitrate sap test for outdoor tomatoes. Sci Hortic 25:211–215

    Article  CAS  Google Scholar 

  • Raun WR, Solie JB, Johnson GV, Stone ML, Mullen RW, Freeman KW, Thomason WE, Lukina EU (2002) Improving nitrogen use efficiency in cereal grain production, with optical sensing and variable rate application. Agron J 94:815–820

    Google Scholar 

  • Roberts S, Cheng HH (1988) Estimation of critical nutrient range of petiole nitrate for sprinkler-irrigated potatoes. Am Potato J 65:119–124

    Article  Google Scholar 

  • Roberts S, Cheng HH, Farrow FO (1989) Nitrate concentration in potato petioles from periodic applications of 15N-labelled ammonium nitrate fertilizer. Agron J 81:271–274

    Google Scholar 

  • Rondeaux G, Steven M, Baret F (1996) Optimization of soil-adjusted vegetation indices. Rem Sens Environ 55:95–107

    Article  Google Scholar 

  • Rosen CJ, Errebhi M, Wang W (1996) Testing petiole sap for nitrate and potassium: a comparison of different analytical procedures. HortScience 31:1173–1176

    CAS  Google Scholar 

  • Salette J, Lemaire G (1981) Sur la variation de la teneur en azote des graminées fourragères pendant leur croissance: formulation d'une loi de dilution. Compte Rendus de l'académie des Sciences, Paris, Série III, 292:875–878

    Google Scholar 

  • Salomez J (1994) Stikstofbemesting in de rij bij aardappelen evaluatie aan de hand van bladsteeltjesonderzoek. Afstudeerwerk voorgedragen tot het behalen van de graad van bio-ingenieur, Universiteit Gent, akademiejaar 1993–1994, Ghent, Belgium, pp 117

  • Schröder JJ, Neeteson JJ, Oenema O, Struik PC (2000) Does the crop or the soil indicate how to save nitrogen in maize production? Reviewing the state of the art. Field Crop Res 66:151–164

    Article  Google Scholar 

  • Shanahan JF, Kitchen NR, Raun WR, Schepers JS (2008) Responsive in-season nitrogen management for cereals. Comput Electron Agric 61:51–62

    Article  Google Scholar 

  • Solari F, Shanahan J, Ferguson R, Schepers J, Gitelson A (2008) Active sensor reflectance measurements of corn nitrogen status and yield potential. Agron J 100:571–579

    Article  CAS  Google Scholar 

  • Sparrow LA, Chapman KSR (2003) Effects of nitrogen fertilizer on potato (Solanum tuberosum L., cv. Russet Burbank) in Tasmania. 2. Petiole and soil analysis. Aust J Exper Agric 43(6):643–650

    Article  Google Scholar 

  • Thenkabail PS, Smith RB, De Pauw E (2000) Hyper-spectral vegetation indices and their relationships with agricultural crop characteristics. Rem Sens Environ 71:158–182

    Article  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature (London) 418:671–677

    Article  CAS  Google Scholar 

  • Tremblay N (2004) Determining nitrogen requirements from crop characteristics. Recent Res Devel Agron Hort 1:157–182

    Google Scholar 

  • Tremblay N, Wang Z, Bélec C (2007) Evaluation of the Dualex for the assessment of corn nitrogen status. J Plant Nutr 30(9):1355–1369

    Article  CAS  Google Scholar 

  • Tyler KB, Broadbent FE, Bishop JC (1983) Efficiency of nitrogen uptake by potatoes. Am Potato J 60:261–269

    Article  Google Scholar 

  • Ulrich A (1952) Physiological bases for assessing the nutritional requirements of plants. Ann Rev Plant Physiol 3:207–228

    Article  Google Scholar 

  • Van Loon CD, Houwing JP (1989) Optimalisering van de stikstof voeding van consumptie-aardappelen. Publikatie no. 42, Proefstation voor Akkerbouw en de Groenteteelt in de Vollegrond, Lelystad, the Netherlands, pp 90

  • Van Loon CD, Slangen JHG, Houwing JH (1987) Nitrate content of leaf petioles as a guide to optimization of N-fertilization of ware potatoes. EAPR Abstracts of Conference Papers and Posters. 10th Triennial Conference of the European Association for Potato Research, Aalborg, Denmark, pp 146–147

  • Varvel GE, Schepers JS, Francis DD (1997) Ability for in-season correction of nitrogen deficiency in corn using chlorophyll meters. Soil Sci Soc Am J 61:1233–1239

    CAS  Google Scholar 

  • Varvel GE, Wilhelm WW, Shanahan JF, Schepers JS (2007) An algorithm for corn nitrogen recommendations using a chlorophyll meter based sufficiency index. Agron J 99:701–706

    Article  CAS  Google Scholar 

  • Vitosh ML, Silva GH (1993) A rapid petiole sap nitrate-nitrogen test for potatoes. Commun Soil Sci Plant Anal 25:183–190

    Article  Google Scholar 

  • Vitosh ML, Silva GH (1996) Factors affecting potato petiole sap nitrate tests. Commun. Soil Sci Plant Anal 27(5–8):1137–1152

    Article  CAS  Google Scholar 

  • Vitosh ML, Silva GH, Leep RH, Douches DS (1992) Sap nitrate testing for improved nitrogen management on potatoes. Hortscience 27:614

    Google Scholar 

  • Vos J (1994) Effects of dicyandiamide on potato performance. J Agron Crop Sci 173:93–99

    Article  CAS  Google Scholar 

  • Vos J, Bom M (1993) Hand-held chlorophyll meter: a promising tool to assess the nitrogen status of potato foliage. Potato Res 36:301–308

    Article  CAS  Google Scholar 

  • Vos J, MacKerron DKL (2000) Basic concepts of the management of supply of nitrogen and water in potato production. In: Haverkort AJ, MacKerron DKL (eds) Management of nitrogen and water in potato production. Wageningen, Wageningen, the Netherlands, pp 15–33

    Google Scholar 

  • Vouillot MO, Huet P, Boissard P (1998) Early detection of N deficiency in a wheat crop using physiological and radiometric methods. Agronomie 18:117–130

    Article  Google Scholar 

  • Weier U, Van Riesen U, Scharpf HC (2001) Nil-N-Plots: a system to estimate the amount of nitrogen top-dressing of vegetables. Acta Hort 563:47–52

    Google Scholar 

  • Welles JM (1990) Some indirect methods of estimating canopy structure. Rem Sens Rev 5:31–43

    Google Scholar 

  • Westcott MP, Stewart VR, Lund RE (1991) Critical petiole nitrate levels in potato. Agron J 83:844–850

    CAS  Google Scholar 

  • Westcott MP, Rosen CJ, Inskeep WP (1993) Direct measurement of petiole sap nitrate in potato to determine crop nitrogen status. J Plant Nutr 16(3):515–521

    Article  Google Scholar 

  • Williams CMJ, Maier NA (1990a) Determination of the nitrogen status of irrigated potato crops. I. Critical nutrient ranges for nitrate-nitrogen in petioles. J Plant Nutr 13(8):971–984

    Article  CAS  Google Scholar 

  • Williams CMJ, Maier NA (1990b) Determination of the nitrogen status of irrigated potato crops. II. A simple on farm quick test for nitrate-nitrogen in petiole sap. J Plant Nutr 13(8):985–993

    Article  CAS  Google Scholar 

  • Wu J, Wang D, Rosen CJ, Bauer ME (2007) Comparison of petiole nitrate concentrations, SPAD chlorophyll readings, and QuickBird satellite imagery in detecting nitrogen status of potato canopies. Field Crops Res 101:96–103

    Article  Google Scholar 

  • Yoder BJ, Pettigrew-Crosby RE (1995) Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales. Rem Sens Environ 53:199–211

    Article  Google Scholar 

  • Zhang H, Smeal D, Arnold RN, Gregory EJ (1996) Potato nitrogen management by monitoring petiole nitrate level. J Plant Nutr 19(10 & 11):1413–1422

    Google Scholar 

  • Zhang J, Blackmer AM, Ellsworth JW, Koehler Kenneth J (2008) Sensitivity of chlorophyll meters for diagnosing nitrogen deficiencies of corn in production agriculture. Agron J 100:543–550

    Article  CAS  Google Scholar 

  • Zebarth BJ, Rees H, Tremblay N, Fournier P, Leblon P (2003) Mapping spatial variation in potato nitrogen status using the “N-sensor”. Acta Hort 627:267–273

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Goffart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goffart, J.P., Olivier, M. & Frankinet, M. Potato Crop Nitrogen Status Assessment to Improve N Fertilization Management and Efficiency: Past–Present–Future. Potato Res. 51, 355–383 (2008). https://doi.org/10.1007/s11540-008-9118-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11540-008-9118-x

Keywords

Navigation