Skip to main content

Advertisement

Log in

SIS Epidemic Propagation on Hypergraphs

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Mathematical modelling of epidemic propagation on networks is extended to hypergraphs in order to account for both the community structure and the nonlinear dependence of the infection pressure on the number of infected neighbours. The exact master equations of the propagation process are derived for an arbitrary hypergraph given by its incidence matrix. Based on these, moment closure approximation and mean-field models are introduced and compared to individual-based stochastic simulations. The simulation algorithm, developed for networks, is extended to hypergraphs. The effects of hypergraph structure and the model parameters are investigated via individual-based simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47–97

    Article  MathSciNet  MATH  Google Scholar 

  • Ball FG, Sirl DJ, Trapman P (2014) Epidemics on random intersection graphs. Ann Appl Probab 24(3):1081–1128

    Article  MathSciNet  MATH  Google Scholar 

  • Bianconi G, Marsili M (2006) Emergence of large cliques in random scale-free networks. Europhys Lett 74:740–746

    Article  MathSciNet  MATH  Google Scholar 

  • Bollobás B (1980) A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Eur J Comb 1(4):311–316

    Article  MathSciNet  MATH  Google Scholar 

  • Bollobás B, Riordan OM, Spencer J, Tusnády G (2001) The degree sequence of a scale-free random graph process. Random Struct Algorithms 18:279–290

    Article  MathSciNet  MATH  Google Scholar 

  • Bollobás B, Riordan O (2004) The diameter of a scale-free random graph. Combinatorica 24(1):5–34

    Article  MathSciNet  MATH  Google Scholar 

  • Chen J, Zhang H, Guan Z-H, Li T (2012) Epidemic spreading on networks with overlapping community structure. Phys A Stat Mech Its Appl 391:1848–1854

    Article  Google Scholar 

  • Cooper C, Alan F, Michael M, Bruce R (1996) Perfect matchings in random \(r\)-regular, \(s\)-uniform hypergraphs. Comb Probab Comput 5(1):1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Danon L, Ford AP, House T, Jewell CP, Keeling MJ, Roberts GO, Ross JV, Vernon MC (2011) Networks and the epidemiology of infectious disease. Interdiscip Perspect Infect Dis 2011:1–28

    Google Scholar 

  • Gleeson JP (2011) High-accuracy approximation of binary-state dynamics on networks. Phys Rev Lett 107:1–9

    Google Scholar 

  • Graham RL, Grötchel M, Lovász L (eds) (1995) Handbook of combinatorics, vol 1. MIT Press, Cambridge

    MATH  Google Scholar 

  • House T (2012) Modelling epidemics on networks. Contemp Phys 53(3):213–225

    Article  Google Scholar 

  • House T, Keeling MJ (2011) Insights from unifying modern approximations to infections on networks. J R Soc Interface 8:67–73

    Article  Google Scholar 

  • Janson S, Luczak M, Windridge P, House T (2015) Near-critical SIR epidemic on a random graph with given degrees. arXiv:1501.05798

  • Klamt S, Haus U-U, Theis F (2009) Hypergraphs and cellular networks. PLoS Comput Biol 5(5):e1000385

    Article  MathSciNet  Google Scholar 

  • Lanchier N, Neufer J (2012) Stochastic dynamics on hypergraphs and the spatial majority rule model. J Stat Phys 151:21–45

    Article  MathSciNet  MATH  Google Scholar 

  • Lindquist J, Ma J, van den Driessche P, Willeboordse FH (2011) Effective degree network disease models. J Math Biol 62:143–164

    Article  MathSciNet  MATH  Google Scholar 

  • Miller JC, Slim AC, Volz EM (2012) Edge-based compartmental modelling for infectious disease spread. J R Soc Interface 9(70):890–906

    Article  Google Scholar 

  • Neal P (2006) Multitype randomized ReedFrost epidemics and epidemics upon random graphs. Ann Appl Probab 16(3):1166–1189

    Article  MathSciNet  MATH  Google Scholar 

  • Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435:814–818. Software: CFinder 2.0.6, http://www.cfinder.org

  • Sharkey KJ (2008) Deterministic epidemiological models at the individual level. J Math Biol 57:311–331

    Article  MathSciNet  MATH  Google Scholar 

  • Simon PL, Taylor M, Kiss IZ (2010) Exact epidemic models on graphs using graph automorphism driven lumping. J Math Biol 62:479–508

    Article  MathSciNet  MATH  Google Scholar 

  • Van Mieghem P, Omic J, Kooij R (2009) Virus spread in networks. IEEE/ACM Trans Netw 17:1–14

    Article  Google Scholar 

  • Van Mieghem P (2011) The N-intertwined SIS epidemic network model. Computing 93:147–169

    Article  MathSciNet  MATH  Google Scholar 

  • Wang B, Cao L, Suzuki H, Aihara K (2012) Impacts of clustering on interacting epidemics. J Theor Biol 304:121–130

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Péter L. Simon acknowledges support from Hungarian Scientific Research Fund, OTKA, (Grant No. 115926). Gyula Y. Katona acknowledges support from OTKA (Grant No. 108947 and 116769).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter L. Simon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodó, Á., Katona, G.Y. & Simon, P.L. SIS Epidemic Propagation on Hypergraphs. Bull Math Biol 78, 713–735 (2016). https://doi.org/10.1007/s11538-016-0158-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0158-0

Keywords

Mathematics Subject Classification

Navigation