Skip to main content
Log in

Experimental and Modelling Investigation of Monolayer Development with Clustering

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Standard differential equation-based models of collective cell behaviour, such as the logistic growth model, invoke a mean-field assumption which is equivalent to assuming that individuals within the population interact with each other in proportion to the average population density. Implementing such assumptions implies that the dynamics of the system are unaffected by spatial structure, such as the formation of patches or clusters within the population. Recent theoretical developments have introduced a class of models, known as moment dynamics models, which aim to account for the dynamics of individuals, pairs of individuals, triplets of individuals, and so on. Such models enable us to describe the dynamics of populations with clustering, however, little progress has been made with regard to applying moment dynamics models to experimental data. Here, we report new experimental results describing the formation of a monolayer of cells using two different cell types: 3T3 fibroblast cells and MDA MB 231 breast cancer cells. Our analysis indicates that the 3T3 fibroblast cells are relatively motile and we observe that the 3T3 fibroblast monolayer forms without clustering. Alternatively, the MDA MB 231 cells are less motile and we observe that the MDA MB 231 monolayer formation is associated with significant clustering. We calibrate a moment dynamics model and a standard mean-field model to both data sets. Our results indicate that the mean-field and moment dynamics models provide similar descriptions of the 3T3 fibroblast monolayer formation whereas these two models give very different predictions for the MDA MD 231 monolayer formation. These outcomes indicate that standard mean-field models of collective cell behaviour are not always appropriate and that care ought to be exercised when implementing such a model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baker, R. E., & Simpson, M. J. (2010). Correcting mean-field approximations for birth–death–movement processes. Phys. Rev. E, 82, 041905.

    MathSciNet  Google Scholar 

  • Binder, B. J., & Landman, K. A. (2011). Quantifying evenly distributed states in exclusion and nonexclusion processes. Phys. Rev. E, 83, 041914.

    Google Scholar 

  • Binder, B. J., Hackett-Jones, E. J., Tuke, J., & Landman, K. A. (2011). A modified Pólya urn process and an index for spatial distributions with volume exclusion. ANZIAM J., 53, 122–133.

    MathSciNet  MATH  Google Scholar 

  • Binder, B. J., Landman, K. A., Newgreen, D. F., Simkin, J. E., Takahashi, Y., & Zhang, D. (2012). Spatial analysis of multi-species exclusion processes: application to neural crest cell migration in the embryonic gut. Bull. Math. Biol., 74, 474–490.

    MathSciNet  MATH  Google Scholar 

  • Bolker, B., & Pacala, S. W. (1997). Using moment equations to understand stochastically-driven spatial pattern formation in ecological systems. Theor. Popul. Biol., 52, 179–197.

    MATH  Google Scholar 

  • Bruna, M., & Chapman, S. J. (2012). Excluded-volume effects in the diffusion of hard spheres. Phys. Rev. E, 85, 011103.

    Google Scholar 

  • Cai, A. Q., Landman, K. A., & Hughes, B. D. (2007). Multi-scale modeling of a wound-healing cell migration assay. J. Theor. Biol., 245, 576–594.

    MathSciNet  Google Scholar 

  • Cailleau, R., Young, R., Olivé, M., & Reeves WJ, Jr. (1974). Breast tumor cell lines from pleural effusions. J. Natl. Cancer Inst., 53, 661–674.

    Google Scholar 

  • Codling, E. A., Plank, M. J., & Benhamou, S. (2008). Random walk models in biology. J. R. Soc. Interface, 5, 813–834.

    Google Scholar 

  • Dangerfield, C. E., Ross, J. V., & Keeling, M. J. (2008). Integrating stochasticity and network structure into an epidemic model. J. R. Soc. Interface, 6, 761–774.

    Google Scholar 

  • Deroulers, C., Aubert, M., Badoual, M., & Grammaticos, B. (2009). Modeling tumor cell migration: from microscopic to macroscopic models. Phys. Rev. E, 79, 031917.

    MathSciNet  Google Scholar 

  • Dyson, L., Maini, P. K., & Baker, R. E. (2012). Macroscopic limits of individual-based models for motile cell populations with volume exclusion. Phys. Rev. E, 86, 031903.

    Google Scholar 

  • Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81, 2340–2631.

    Google Scholar 

  • Hackett-Jones, E. J., Landman, K. A., Newgreen, D. F., & Zhang, D. (2011). On the role of differential adhesion in gangliogenesis in the enteric nervous system. J. Theor. Biol., 287, 148–159.

    Google Scholar 

  • Hackett-Jones, E. J., Davies, K. J., Binder, B. J., & Landman, K. A. (2012). Generalized index for spatial data sets as a measure of complete spatial randomness. Phys. Rev. E, 85, 061908.

    Google Scholar 

  • Hansen, J.-P., & McDonald, I. R. (2006). Theory of simple liquids (3rd edn.). London: Elsevier/Academic Press.

    Google Scholar 

  • Hughes, B. D. (1995). Random walks and random environments (Vol. 1). Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Illian, J., Penttinen, A., Stoyan, H., & Stoyan, D. (2008). Statistical analysis and modelling of spatial point patterns. Chichester: Wiley.

    MATH  Google Scholar 

  • Johnston, S. T., Simpson, M. J., & Baker, R. E. (2012). Mean-field descriptions of collective migration with strong adhesion. Phys. Rev. E, 85, 051922.

    Google Scholar 

  • Keeling, M. J., Rand, D. A., & Morris, A. J. (1997). Correlation models for childhood epidemics. Proc. R. Soc. Lond. B, 264, 1149–1156.

    Google Scholar 

  • Lah, G. J., & Key, B. (2012). Novel roles of the chemorepellent axon guidance molecule RGMa in cell migration and adhesion. Mol. Cell. Biol., 32, 968–980.

    Google Scholar 

  • Law, R., & Dieckmann, U. (2000). A dynamical system for neighbourhoods in plant communities. Ecology, 81, 2137–2148.

    Google Scholar 

  • Law, R., Murrell, D. J., & Dieckmann, U. (2003). Population growth in space and time: spatial logistic equations. Ecology, 84, 252–262.

    Google Scholar 

  • Law, R., Illian, J., Burslem, D. F. R. P., Gratzer, G., Gunatilleke, C. V. S., & Gunatilleke, A. U. N. (2009). Ecological information from spatial patterns of plants: insights from point process theory. J. Ecol., 97, 616–628.

    Google Scholar 

  • Liggett, T. M. (1999). Stochastic interacting systems: contact, voter and exclusion processes. Berlin: Springer.

    MATH  Google Scholar 

  • Mai, J., Kuzovkov, V. N., & von Niessen, W. (1993). A theoretical stochastic model for the A+1/2B 2→0 reaction. J. Chem. Phys., 98, 10017–10025.

    Google Scholar 

  • Mai, J., Kuzovkov, V. N., & von Niessen, W. (1994). A general stochastic model for the description of surface reaction systems. Physica A, 203, 298–315.

    Google Scholar 

  • Maini, P. K., McElwain, D. L. S., & Leavesley, D. I. (2004a). Traveling wave model to interpret a wound-healing cell migration assay for human peritoneal mesothelial cells. Tissue Eng., 10, 475–482.

    Google Scholar 

  • Maini, P. K., McElwain, D. L. S., & Leavesley, D. (2004b). Travelling waves in a wound healing assay. Appl. Math. Lett., 17, 575–580.

    MathSciNet  MATH  Google Scholar 

  • Massey, S. C., Assanah, M. C., Lopez, K. A., Canoll, P., & Swanson, K. R. (2012). Glial progenitor cell recruitment drives aggressive glioma growth: mathematical and experimental modelling. J. R. Soc. Interface, 9, 1757–1766.

    Google Scholar 

  • Murray, J. D. (2002). Mathematical biology I: an introduction (3rd edn.). Heidelberg: Springer.

    MATH  Google Scholar 

  • Murrell, D. J., Dieckmann, U., & Law, R. (2004). On moment closures for population dynamics in continuous space. J. Theor. Biol., 229, 421–432.

    Google Scholar 

  • Penington, C. J., Hughes, B. D., & Landman, K. A. (2011). Building macroscale models from microscale probabilistic models: a general probabilistic approach for nonlinear diffusion and multispecies phenomena. Phys. Rev. E, 84, 041120.

    Google Scholar 

  • Penington, C. J., Korvasová, K., Hughes, B. D., & Landman, K. A. (2012). Collective motion of dimers. Phys. Rev. E, 86, 051909.

    Google Scholar 

  • Phelps, J. H., & Tucker, C. L. (2006). Lagrangian particle calculations of distributive mixing: limitations and applications. Chem. Eng. Sci., 61, 6826–6836.

    Google Scholar 

  • Plank, M. J., & Simpson, M. J. (2012). Models of collective cell behaviour with crowding effects: comparing lattice-based and lattice-free approaches. J. R. Soc. Interface, 9, 2983–2996.

    Google Scholar 

  • Raghib, M., Hill, N. A., & Dieckmann, U. (2011). A multiscale maximum entropy moment closure for locally regulated space—time point process models of population dynamics. J. Math. Biol., 62, 605–653.

    MathSciNet  MATH  Google Scholar 

  • Sengers, B. G., Please, C. P., & Oreffo, R. OC. (2007). Experimental characterization and computational modelling of two-dimensional cell spreading for skeletal regeneration. J. R. Soc. Interface, 4, 1107–1117.

    Google Scholar 

  • Sharkey, K. J. (2008). Deterministic epidemiological models at the individual level. J. Math. Biol., 57, 311–331.

    MathSciNet  MATH  Google Scholar 

  • Sharkey, K. J. (2011). Deterministic epidemic models on contact networks: correlations and unbiological terms. Theor. Popul. Biol., 79, 115–129.

    Google Scholar 

  • Sherratt, J. A., & Murray, J. D. (1990). Models of epidermal wound healing. Proc. R. Soc. Lond. B, 241, 29–36.

    Google Scholar 

  • Shiozaki, H., Tahara, H., Oka, H., Miyata, M., Kobayashi, K., Tamura, S., Iihara, K., Doki, Y., Hirano, S., Takeichi, M., & Mori, T. (1991). Expression of immunoreactive E-Cadherin adhesion molecules in human cancers. Am. J. Pathol., 139, 17–23.

    Google Scholar 

  • Simpson, M. J., & Baker, R. E. (2011). Corrected mean-field models for spatially-dependent advection–diffusion–reaction phenomena. Phys. Rev. E, 83, 051922.

    Google Scholar 

  • Simpson, M. J., Landman, K. A., Hughes, B. D., & Fernando, A. E. (2010a). A model for mesoscale patterns in motile populations. Physica A, 389, 1412–1424.

    Google Scholar 

  • Simpson, M. J., Landman, K. A., & Hughes, B. D. (2010b). Cell invasion with proliferation mechanisms motivated by time-lapse data. Physica A, 389, 3779–3790.

    Google Scholar 

  • Simpson, M. J., Baker, R. E., & McCue, S. W. (2011). Models of collective cell spreading with variable cell aspect ratio: a motivation for degenerate diffusion models. Phys. Rev. E, 83, 021901.

    Google Scholar 

  • Simpson, M. J., Treloar, K. K., Binder, B. J., Haridas, P., Manton, K., Leavesley, D. I., McElwain, D. L. S., & Baker, R. E. (2013). Quantifying the roles of cell motility and cell proliferation in a circular barrier assay. J. R. Soc. Interface, 10, 20130007.

    Google Scholar 

  • Singer, A. (2004). Maximum entropy formulation of the Kirkwood superposition approximation. J. Chem. Phys., 121, 3657.

    Google Scholar 

  • Suzuki, T., Fujikura, K., Higashiyama, T., & Takata, K. (1997). DNA staining for fluorescence and laser confocal microscopy. J. Histochem. Cytochem., 45, 49–53.

    Google Scholar 

  • Swanson, K. R., Bridge, C., Murray, J. D., & Alvord, E. C. Jr. (2003). Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci., 216, 1–10.

    Google Scholar 

  • Takeichi, M. (1991). Cadherin cell adhesion receptors as a morphogenetic regulator. Science, 251, 1451–1555.

    Google Scholar 

  • Tamm, I., Kikuchi, Y., Cardinale, I., & Krueger, J. G. (1994). Cell-adhesion-disrupting action of interleukin 6 in human ductal breast carcinoma cells. Proc. Natl. Acad. Sci. USA, 91, 3329–3333.

    Google Scholar 

  • Todaro, G. J., & Green, H. (1963). Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol., 17, 299–313.

    Google Scholar 

  • Tremel, A., Cai, A. Q., Tirtaatmadja, N., Hughes, B. D., Stevens, G. W., Landman, K. A., & O’Connor, A. J. (2009). Cell migration and proliferation during monolayer formation and wound healing. Chem. Eng. Sci., 64, 247–253.

    Google Scholar 

  • Young, W. R., Roberts, A. J., & Stuhne, G. (2001). Reproductive pair correlations and the clustering of organisms. Nature, 412, 328–331.

    Google Scholar 

Download references

Acknowledgements

We appreciate the advice and assistance of Associate Professor David Leavesley, Dr. Kerry Manton and Dr Leo de Boer. This research is supported by the Australian Research Council Discovery Project DP120100551, and the 2011 International Exchange Scheme funded by the Royal Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Simpson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simpson, M.J., Binder, B.J., Haridas, P. et al. Experimental and Modelling Investigation of Monolayer Development with Clustering. Bull Math Biol 75, 871–889 (2013). https://doi.org/10.1007/s11538-013-9839-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9839-0

Keywords

Navigation