Skip to main content
Log in

A Geometric Buildup Algorithm for the Solution of the Distance Geometry Problem Using Least-Squares Approximation

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We propose a new geometric buildup algorithm for the solution of the distance geometry problem in protein modeling, which can prevent the accumulation of the rounding errors in the buildup calculations successfully and also tolerate small errors in given distances. In this algorithm, we use all instead of a subset of available distances for the determination of each unknown atom and obtain the position of the atom by using a least-squares approximation instead of an exact solution to the system of distance equations. We show that the least-squares approximation can be obtained by using a special singular value decomposition method, which not only tolerates and minimizes small distance errors, but also prevents the rounding errors from propagation effectively, especially when the distance data is sparse. We describe the least-squares formulations and their solution methods, and present the test results from applying the new algorithm for the determination of a set of protein structures with varying degrees of availability and accuracy of the distances. We show that the new development of the algorithm increases the modeling ability, and improves stability and robustness of the geometric buildup approach significantly from both theoretical and practical points of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biswas, P., Liang, T., Wang, T., Ye, Y., 2006. Semidefinite programming based algorithms for sensor network localization. ACM J. Trans. Sensor Netw. 2, 188–220.

    Article  Google Scholar 

  • Biswas, P., Liang, T., Toh, K., Ye, Y., 2007. A SDP based approach to anchor-free 3D graph realization. Department of Management Science and Engineering, Electrical Engineering, Stanford University, Stanford, California.

  • Blumenthal, L.M., 1953. Theory and Applications of Distance Geometry. Clarendon, Oxford.

    MATH  Google Scholar 

  • Crippen, G.M., Havel, T.F., 1988. Distance Geometry and Molecular Conformation. Wiley, New York.

    MATH  Google Scholar 

  • Dong, Q., Wu, Z., 2002. A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances. J. Global Optim. 22, 365–375.

    Article  MATH  MathSciNet  Google Scholar 

  • Dong, Q., Wu, Z., 2003. A geometric buildup algorithm for solving the molecular distance geometry problem with sparse distance data. J. Global Optim. 26, 321–333.

    Article  MATH  MathSciNet  Google Scholar 

  • Glunt, W., Hayden, T.L., Hong, S., Wells, J., 1990. An alternating projection algorithm for computing the nearest Euclidean distance matrix. SIAM J. Matrix Anal. Appl. 11, 589–600.

    Article  MATH  MathSciNet  Google Scholar 

  • Glunt, W., Hayden, T.L., Raydan, M., 1993. Molecular conformations from distance matrices. J. Comput. Chem. 14, 114–120.

    Article  Google Scholar 

  • Golub, G.H., van Loan, C.F., 1989. Matrix Computations. Johns Hopkins Press, Baltimore.

    MATH  Google Scholar 

  • Grosso, A., Locatelli, M., Schoen, F., 2007. Solving molecular distance geometry problems by global optimization algorithms. J. Comput. Opt. Appl. 43, 22–37.

    Google Scholar 

  • Havel, T., 1991. An evaluation of computational strategies for use in the determination of protein structure from distance constraints obtained by nuclear magnetic resonance. Prog. Biophys. Molec. Biol. 56, 43–78.

    Article  Google Scholar 

  • Havel, T.F., 1995. Distance geometry. In: Grant, D.M., Harris, R.K. (Eds.), Encyclopedia of Nuclear Magnetic Resonance, pp. 1701–1710. Wiley, New York.

    Google Scholar 

  • Havel, T.F., 1998. Distance geometry: Theory, algorithms, and chemical applications. In: Encyclopedia of Computational Chemistry, pp. 1–20. Wiley, New York.

    Google Scholar 

  • Hendrickson, B., 1992. Conditions for unique graph realizations. SIAM J. Comput. 21, 65–84.

    Article  MATH  MathSciNet  Google Scholar 

  • Hendrickson, B., 1995. The molecule problem: Exploiting structure in global optimization. SIAM J. Optim. 5, 835–857.

    Article  MATH  MathSciNet  Google Scholar 

  • Hou, J.T., Sims, G.E., Zhang, C., Kim, S.H., 2003. A global representation of the protein fold space. Proc. Natl. Acad. Sci. USA 100, 2386–2390.

    Article  Google Scholar 

  • Huang, H.X., Liang, Z.A., Pardalos, P., 2003. Some properties for the Euclidean distance matrix and positive semi-definite matrix completion problems. J. Global Optim. 25, 3–21.

    Article  MATH  MathSciNet  Google Scholar 

  • Kearsly, A., Tapia, R., Trosset, M., 1998. Solution of the metric STRESS and SSTRESS problems in multidimensional scaling by Newton’s method. Comput. Stat. 13, 369–396.

    Google Scholar 

  • Klock, H., Buhmann, J.M., 1997. Multidimensional scaling with deterministic annealing. In: Pilillo, M., Hancock, E.R. (Eds.), Energy Minimization Methods in Computer Vision and Pattern Recognition, Lecture Notes in Computer Science, vol. 1223, pp. 246–260. Springer, Berlin.

    Google Scholar 

  • Le Thi Hoai, A., Pham Dinh, T., 2003. Large scale molecular optimization from distance matrices by a d.c. optimization approach. SIAM J. Optim. 4, 77–116.

    Google Scholar 

  • Moré, J., Wu, Z., 1996. ε-Optimal solutions to distance geometry problems via global continuation. In: Pardalos, P.M., Shalloway, D., Xue, G. (Eds.), Global Minimization of Non-Convex Energy Functions: Molecular Conformation and Protein Folding, pp. 151–168. Am. Math. Soc., Providence.

    Google Scholar 

  • Moré, J., Wu, Z., 1997. Global continuation for distance geometry problems. SIAM J. Optim. 7, 814–836.

    Article  MATH  MathSciNet  Google Scholar 

  • Moré, J., Wu, Z., 1999. Distance geometry optimization for protein structures. J. Global Optim. 15, 219–234.

    Article  MATH  MathSciNet  Google Scholar 

  • Saxe, J.B., 1979. Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proc. 17th Allerton Conference in Communications, Control and Computing, pp. 480–489.

  • Sippl, M., Scheraga, H., 1985. Solution of the embedding problem and decomposition of symmetric matrices. Proc. Natl. Acad. Sci. USA 82, 2197–2201.

    Article  MATH  MathSciNet  Google Scholar 

  • Sippl, M., Scheraga, H., 1986. Cayley-Menger coordinates. Proc. Natl. Acad. Sci. USA 83, 2283–2287.

    Article  MATH  MathSciNet  Google Scholar 

  • Torgerson, W.S., 1958. Theory and Method of Scaling. Wiley, New York.

    Google Scholar 

  • Trosset, M., 1998. Applications of multidimensional scaling to molecular conformation. Comput. Sci. Stat. 29, 148–152.

    Google Scholar 

  • Wu, D., Wu, Z., 2007. An updated geometric buildup algorithm for solving the molecular distance geometry problem with sparse distance data. J. Global Optim. 37, 661–673.

    Article  MATH  MathSciNet  Google Scholar 

  • Zou, Z., Byrd, R.H., Schnabel, R.B., 1997. A stochastic/perturbation global optimization algorithm for distance geometry problems. J. Global Optim. 11, 91–105.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atilla Sit.

Additional information

Work supported by the NIH/NIGMS grant R01GM081680, and the NSF grant of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sit, A., Wu, Z. & Yuan, Y. A Geometric Buildup Algorithm for the Solution of the Distance Geometry Problem Using Least-Squares Approximation. Bull. Math. Biol. 71, 1914–1933 (2009). https://doi.org/10.1007/s11538-009-9431-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9431-9

Keywords

Navigation