Skip to main content
Log in

Nonlocal Mechanism of Self-Organization and Centering of Microtubule Asters

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Fragments of fish melanophore cells can form and center aggregates of pigment granules by dynein-motor-driven transport along a self-organized radial array of microtubules (MTs). We present a quantitative model that describes pigment aggregation and MT-aster self-organization and the subsequent centering of both structures. The model is based on the observations that MTs are immobile and treadmill, while dynein-motor-covered granules have the ability to nucleate MTs. From assumptions based on experimental observations, we derive partial integro-differential equations describing the coupled granule–MT interaction. We use scaling arguments and perturbation theory to study the model in two limiting cases. The model analysis explains the mechanism of aster self-organization as a positive feedback loop between motor aggregation at the MT minus ends and MT nucleation by motors. Furthermore, the centering mechanism is explained by the spontaneous nucleation of MTs throughout the cytosol which acts as a volume sensing tool. Numerical simulations lend additional support to the analysis. The model sheds light on role of polymer dynamics and polymer–motor interactions in cytoskeletal organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bray, D., 2002. Cell Movements. Garland, New York.

    Google Scholar 

  • Burakov, A., Nadezhdina, E., Slepchenko, B., Rodionov, V., 2003. Centrosome positioning in interphase cells. J. Cell Biol. 162, 963–969.

    Article  Google Scholar 

  • Cytrynbaum, E., Rodionov, V., Mogilner, A., 2004. Computational model of dynein-dependent self-organization of microtubule asters. J. Cell Sci. 117, 1381–1397.

    Article  Google Scholar 

  • Garcia, A.L., 2000. Numerical Methods for Physics. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Grindrod, P., 1991. Patterns and Waves. Claredon Press, Oxford, UK.

    MATH  Google Scholar 

  • Holzbaur, E.L., Vallee, R.B., 1994. Dyneins: molecular structure and cellular function. Annu. Rev. Cell Biol. 10, 339–372.

    Article  Google Scholar 

  • Jager, E., Segel, L.A., 1992. On the distribution of dominance in a population of interacting anonymous organisms. SIAM J. Appl. Math. 52, 1442–1468.

    Article  MathSciNet  Google Scholar 

  • Kang, K., Kololkolnikov, T., Ward, M.J., 2005. The stability and dynamics of a spike in the one-dimensional Keller-Segel model. IMA J. Appl. Math. in press.

  • Keller, E.F., Segel, L.A., 1970. The initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415.

    Article  Google Scholar 

  • Keller, E.F., Segel, L.A., 1971. Model for chemotaxis. J. Theor. Biol. 30, 225–234.

    Article  Google Scholar 

  • Kellogg, D.R., Moritz, M., Alberts, B.M., 1994. The centrosome and cellular organization. Annu. Rev. Biochem. 63, 639–674.

    Article  Google Scholar 

  • Lin, C.C., Segel, L.A., 1988. Mathematics Applied to Deterministic Problems in the Natural Sciences. Macmillan Publishing Co., New York.

    MATH  Google Scholar 

  • Malikov, V., Cytrynbaum, E.N., Kashina, A., Mogilner, A., Rodionov, V., 2005. Centering of a radial microtubule array by translocation along microtubules spontaneously nucleated in the cytoplasm. Nat. Cell Biol. 7, 1213–1218.

    Google Scholar 

  • Maly, I.V., Borisy, G.G., 2002. Self-organization of treadmilling microtubules into a polar array. Trends Cell Biol. 12, 462–465.

    Article  Google Scholar 

  • Nascimento, A.A., Roland, J.T., Gelfand, V.I., 2003. Pigment cells: a model for the study of organelle transport. Annu. Rev. Cell Dev. Biol. 19, 469–491.

    Article  Google Scholar 

  • Nedelec, F.J., Surrey, T., Maggs, A.C., Leibler, S., 1997. Self-organization of microtubules and motors. Nature 389, 305–308.

    Article  Google Scholar 

  • Rodionov, V.I., Borisy, G.G., 1997. Self-centering activity of cytoplasm. Nature 386, 170–173.

    Article  Google Scholar 

  • Rodionov, V.I., Lim, S.-S., Gelfand, V.I., Borisy, G.G., 1994. Microtubule dynamics in fish melanophores. J. Cell Biol. 126, 1455–1464.

    Article  Google Scholar 

  • Segel, L.A., 1972. Simplification and Scaling. SIAM Review 14, Macmillan, New York, pp. 547–571.

    Google Scholar 

  • Schiebel, E., 2000. Gamma—tubulin complexes: Binding to the centrosome, regulation and microtubule nucleation. Curr. Opin. Cell Biol. 12, 113–118.

    Article  Google Scholar 

  • Tran, P.T., Marsh, L., Doye, V., Inoue, S., Chang, F., 2001. A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J. Cell Biol. 153, 397–411.

    Article  Google Scholar 

  • Verde, F., Berrez, J.M., Antony, C., Karsenti, E., 1991. Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: Requirement for phosphorylated factors and cytoplasmic dynein. J. Cell Biol. 112, 1177–1187.

    Article  Google Scholar 

  • Vorobjev, I., Malikov, V., Rodionov, V., 2001. Self-organization of a radial microtubule array by dynein-dependent nucleation of microtubules. Proc. Natl. Acad. Sci. USA 98, 10160–10165.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cytrynbaum, E.N., Rodionov, V. & Mogilner, A. Nonlocal Mechanism of Self-Organization and Centering of Microtubule Asters. Bull. Math. Biol. 68, 1053–1072 (2006). https://doi.org/10.1007/s11538-006-9092-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9092-x

Key Words

Navigation