Skip to main content

Advertisement

Log in

The Health and Economic Impact of Using a Sugar Sweetened Beverage Tax to Fund Fruit and Vegetable Subsidies in New York City: A Modeling Study

  • Original Article
  • Published:
Journal of Urban Health Aims and scope Submit manuscript

Abstract 

Low fruit and vegetable (FV) intake and high sugar-sweetened beverage (SSB) consumption are independently associated with an increased risk of developing cardiovascular disease (CVD). Many people in New York City (NYC) have low FV intake and high SSB consumption, partly due to high cost of fresh FVs and low cost of and easy access to SSBs. A potential implementation of an SSB tax and an FV subsidy program could result in substantial public health and economic benefits. We used a validated microsimulation model for predicting CVD events to estimate the health impact and cost-effectiveness of SSB taxes, FV subsidies, and funding FV subsidies with an SSB tax in NYC. Population demographics and health profiles were estimated using data from the NYC Health and Nutrition Examination Survey. Policy effects and price elasticity were derived from recent meta-analyses. We found that funding FV subsidies with an SSB tax was projected to be the most cost-effective policy from the healthcare sector perspective. From the societal perspective, the most cost-effective policy was SSB taxes. All policy scenarios could prevent more CVD events and save more healthcare costs among men compared to women, and among Black vs. White adults. Public health practitioners and policymakers may want to consider adopting this combination of policy actions, while weighing feasibility considerations and other unintended consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Martinez-Gonzalez MA, Ros E, Estruch R. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;379(14):1388–9. https://doi.org/10.1056/NEJMc1809971.

    Article  PubMed  Google Scholar 

  2. Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation. 2016;133(2):187–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Keller A, Heitmann BL, Olsen N. Sugar-sweetened beverages, vascular risk factors and events: a systematic literature review. Public Health Nutr. 2015;18(07):1145–54.

    Article  PubMed  Google Scholar 

  4. Xi B, Huang Y, Reilly KH, et al. Sugar-sweetened beverages and risk of hypertension and CVD: a dose–response meta-analysis. Br J Nutr. 2015;113(05):709–17.

    Article  CAS  PubMed  Google Scholar 

  5. Wang X, Ouyang Y, Liu J, et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ. 2014;349:g4490. https://doi.org/10.1136/bmj.g4490.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dauchet L, Amouyel P, Hercberg S, Dallongeville J. Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies. J Nutr. 2006;136(10):2588–93.

    Article  CAS  PubMed  Google Scholar 

  7. Rehm CD, Penalvo JL, Afshin A, Mozaffarian D. Dietary intake among US adults, 1999–2012. JAMA. 2016;315(23):2542–53. https://doi.org/10.1001/jama.2016.7491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blanck HM, Gillespie C, Kimmons JE, Seymour JD, Serdula MK. Trends in fruit and vegetable consumption among US men and women, 1994–2005. Prev Chronic Dis. 2008;5(2):A35. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2396974/. Accessed 11 Nov 2021.

  9. Healthy Food America. Compare tax policies. Healthy Food America. 2021. https://www.healthyfoodamerica.org/compare_tax_policies.  Accessed 11 Nov 2021.

  10. Crosbie E, Pomeranz JL, Wright KE, Hoeper S, Schmidt L. State preemption: an emerging threat to local sugar-sweetened beverage taxation. Am J Public Health. 2021;111(4):677–86.

    Article  PubMed  Google Scholar 

  11. Krieger J, Bleich SN, Scarmo S, Ng SW. Sugar-sweetened beverage reduction policies: progress and promise. Annu Rev Public Health. 2021;42:439–61.

    Article  PubMed  Google Scholar 

  12. Moran AJ, Gu Y, Clynes S, Goheer A, Roberto CA, Palmer A. Associations between governmental policies to improve the nutritional quality of supermarket purchases and individual, retailer, and community health outcomes: an integrative review. Int J Environ Res Public Health. 2020;17(20):7493.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Krieger J, Magee K, Hennings T, Schoof J, Madsen KA. How sugar-sweetened beverage tax revenues are being used in the United States. Prev Med Rep. 2021;23:101388.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Engel K, Ruder EH. Fruit and vegetable incentive programs for supplemental nutrition assistance program (SNAP) participants: a scoping review of program structure. Nutrients. 2020;12(6):1676.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rummo PE, Lyerly R, Rose J, Malyuta Y, Cohen ED, Nunn A. The impact of financial incentives on SNAP transactions at mobile produce markets. Int J Behav Nutr Phys Act. 2021;18(1):1–8.

    Article  Google Scholar 

  16. Moran A, Thorndike A, Franckle R, et al. Financial incentives increase purchases of fruit and vegetables among lower-income households with children. Health Aff (Millwood). 2019;38(9):1557–66.

    Article  PubMed  Google Scholar 

  17. Rummo PE, Noriega D, Parret A, Harding M, Hesterman O, Elbel BE. Evaluating a USDA program that gives SNAP participants financial incentives to buy fresh produce in supermarkets. Health Aff (Millwood). 2019;38(11):1816–23.

    Article  PubMed  Google Scholar 

  18. Pearson-Stuttard J, Bandosz P, Rehm CD, et al. Comparing effectiveness of mass media campaigns with price reductions targeting fruit and vegetable intake on US cardiovascular disease mortality and race disparities. Am J Clin Nutr. 2017;106(1):199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pearson-Stuttard J, Bandosz P, Rehm CD, et al. Reducing US cardiovascular disease burden and disparities through national and targeted dietary policies: a modelling study. PLoS Med. 2017;14(6): e1002311.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jack D, Neckerman K, Schwartz-Soicher O, et al. Socio-economic status, neighbourhood food environments and consumption of fruits and vegetables in New York City. Public Health Nutr. 2013;16(07):1197–205.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Loftfield E, Yi SS, Curtis CJ, Bartley K, Kansagra SM. Potassium and fruit and vegetable intakes in relation to social determinants and access to produce in New York City. Am J Clin Nutr. 2013;98(5):1282–8.

    Article  CAS  PubMed  Google Scholar 

  22. Lee-Kwan SH, Moore LV, Blanck HM, Harris DM, Galuska D. Disparities in state-specific adult fruit and vegetable consumption—United States, 2015. MMWR Morb Mortal Wkly Rep. 2017;66(45):1241.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jiang N, Stella SY, Russo R, et al. Trends and sociodemographic disparities in sugary drink consumption among adults in New York City, 2009–2017. Prev Med Rep. 2020;19:101162.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kohli-Lynch CN, Bellows BK, Thanassoulis G, et al. Cost-effectiveness of low-density lipoprotein cholesterol level–guided statin treatment in patients with borderline cardiovascular risk. JAMA Cardiol. 2019;4(10):969–77.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kohli-Lynch CN, Bellows BK, Zhang Y, et al. Cost-effectiveness of lipid-lowering treatment in young adults. J Am Coll Cardiol. 2021;78(20):1954–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moran AE, Odden MC, Thanataveerat A, et al. Cost-effectiveness of hypertension therapy according to 2014 guidelines. N Engl J Med. 2015;372(5):447–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weinstein MC, Coxson PG, Williams LW, Pass TM, Stason WB, Goldman L. Forecasting coronary heart disease incidence, mortality, and cost: the coronary heart disease policy model. Am J Public Health. 1987;77(11):1417–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang Y, Vittinghoff E, Pletcher MJ, et al. Associations of blood pressure and cholesterol levels during young adulthood with later cardiovascular events. J Am Coll Cardiol. 2019;74(3):330–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oelsner EC, Balte PP, Cassano PA, et al. Harmonization of respiratory data from 9 US population-based cohorts: the NHLBI pooled cohorts study. Am J Epidemiol. 2018;187(11):2265–78.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zeki Al Hazzouri A, Vittinghoff E, Zhang Y, et al. Use of a pooled cohort to impute cardiovascular disease risk factors across the adult life course. Int J Epidemiol. 2019;48(3):1004–13.

    Article  PubMed  Google Scholar 

  31. New York City Department of health and mental hygiene. New York City Community Health Survey (CHS). Published 2018. Accessed July 14, 2019. https://www1.nyc.gov/site/doh/data/data-sets/community-health-survey.page

  32. Afshin A, Peñalvo JL, Del Gobbo L, et al. The prospective impact of food pricing on improving dietary consumption: a systematic review and meta-analysis. PLoS ONE. 2017;12(3):e0172277.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Narain A, Kwok CS, Mamas MA. Soft drinks and sweetened beverages and the risk of cardiovascular disease and mortality: a systematic review and meta-analysis. Int J Clin Pract. 2016;70(10):791–805.

    Article  CAS  PubMed  Google Scholar 

  34. Micha R, Peñalvo JL, Cudhea F, Imamura F, Rehm CD, Mozaffarian D. Association between dietary factors and mortality from heart disease, stroke, and type 2 diabetes in the United States. JAMA. 2017;317(9):912–24.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Moran AE, Forouzanfar MH, Roth GA, et al. Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: the Global Burden of Disease 2010 study. Circulation. 2014;129(14):1483–92. https://doi.org/10.1161/CIRCULATIONAHA.113.004042.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Moran AE, Forouzanfar MH, Roth GA, et al. The global burden of ischemic heart disease in 1990 and 2010: the Global Burden of Disease 2010 study. Circulation. 2014;129(14):1493–501. https://doi.org/10.1161/CIRCULATIONAHA.113.004046.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Murray CJL, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet. 2012;380(9859):2197–223. https://doi.org/10.1016/S0140-6736(12)61689-4.

    Article  Google Scholar 

  38. Centers for Disease Control and Prevention. CDC WONDER. Atlanta, GA. Available at: https://wonder.cdc.gov. Accessed 21 Feb 2019.

  39. Sanders GD, Neumann PJ, Basu A, et al. Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: second panel on cost-effectiveness in health and medicine. JAMA. 2016;316(10):1093–103.

    Article  PubMed  Google Scholar 

  40. Eze-Nliam CM, Zhang Z, Weiss SA, Weintraub WS. Cost-effectiveness assessment of cardiac interventions: determining a socially acceptable cost threshold. Interv Cardiol. 2014;6(1):45.

    Article  Google Scholar 

  41. Mozaffarian D, Liu J, Sy S, et al. Cost-effectiveness of financial incentives and disincentives for improving food purchases and health through the US Supplemental Nutrition Assistance Program (SNAP): a microsimulation study. PLoS Med. 2018;15(10):e1002661. https://doi.org/10.1371/journal.pmed.1002661.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lee Y, Mozaffarian D, Sy S, et al. Health impact and cost-effectiveness of volume, tiered, and absolute sugar content sugar-sweetened beverage tax policies in the United States: a microsimulation study. Circulation. 2020;142(6):523–34.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Purtle J, Langellier B, Lê-Scherban F. A case study of the Philadelphia sugar-sweetened beverage tax policymaking process: implications for policy development and advocacy. J Public Health Manag Pract. 2018;24(1):4–8.

    Article  PubMed  Google Scholar 

  44. Jou J, Niederdeppe J, Barry CL, Gollust SE. Strategic messaging to promote taxation of sugar-sweetened beverages: lessons from recent political campaigns. Am J Public Health. 2014;104(5):847–53.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Long MW, Polacsek M, Bruno P, et al. Cost-effectiveness analysis and stakeholder evaluation of 2 obesity prevention policies in Maine, US. J Nutr Educ Behav. 2019;51(10):1177–87.

    Article  PubMed  Google Scholar 

  46. Teng AM, Jones AC, Mizdrak A, Signal L, Genç M, Wilson N. Impact of sugar-sweetened beverage taxes on purchases and dietary intake: systematic review and meta-analysis. Obes Rev. 2019;20(9):1187–204.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Popkin BM, Ng SW. Sugar-sweetened beverage taxes: lessons to date and the future of taxation. PLoS Med. 2021;18(1):e1003412.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shi Z, Ruel G, Dal Grande E, Pilkington R, Taylor AW. Soft drink consumption and multimorbidity among adults. Clin Nutr ESPEN. 2015;10(2):e71–6.

    Article  PubMed  Google Scholar 

  49. Long MW, Gortmaker SL, Ward ZJ, et al. Cost effectiveness of a sugar-sweetened beverage excise tax in the US. Am J Prev Med. 2015;49(1):112–23.

    Article  PubMed  PubMed Central  Google Scholar 

  50. NYC Health. Good health, good value: NYC Receives $5.5 Million Grant to Make Healthy Food More Affordable to New Yorkers.; 2021. https://www1.nyc.gov/site/doh/about/press/pr2021/good-health-good-value-nyc-receives-grant-for-affordable-healthy-food.page. Accessed 11 Nov 2021.

  51. Payne GH, Wethington H, Olsho L, Jernigan J, Farris R, Walker DK. Peer Reviewed: implementing a farmers’ market incentive program: perspectives on the New York City Health Bucks Program. Prev Chronic Dis. 2013;10.

  52. The Obesity Evidence Hub. Countries That have taxes on sugar-sweetened beverages (SSBs). Cancer Council Victoria; 2022. www.obesityevidencehub.org.au. Accessed 11 Nov 2021.

  53. Crosbie E, Florence D. Expanding our understanding of industry opposition to help implement sugar-sweetened beverage taxation. Public Health Nutr. Published online 2021:1–3.

  54. Pomeranz JL, Pertschuk M. State preemption: a significant and quiet threat to public health in the United States. Am J Public Health. 2017;107(6):900–2.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Crosbie E, Schillinger D, Schmidt LA. State preemption to prevent local taxation of sugar-sweetened beverages. JAMA Intern Med. 2019;179(3):291–2.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Falbe J, Madsen K. Growing momentum for sugar-sweetened beverage campaigns and policies: costs and considerations. Am J Public Health. 2017;107(6):835–8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Romanos-Nanclares A, Toledo E, Gardeazabal I, Jiménez-Moleón JJ, Martínez-González MA, Gea A. Sugar-sweetened beverage consumption and incidence of breast cancer: the Seguimiento Universidad de Navarra (SUN) Project. Eur J Nutr. 2019;58(7):2875–86.

    Article  CAS  PubMed  Google Scholar 

  58. Terry P, Terry JB, Wolk A. Fruit and vegetable consumption in the prevention of cancer: an update. J Intern Med. 2001;250(4):280–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the National Heart, Lung, and Blood Institute (R01HL141427) of the National Institutes of Health. The contents of this article are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brandon K. Bellows, Nan Kong or Yan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1603 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, Z., Yi, S.S., Pomeranz, J. et al. The Health and Economic Impact of Using a Sugar Sweetened Beverage Tax to Fund Fruit and Vegetable Subsidies in New York City: A Modeling Study. J Urban Health 100, 51–62 (2023). https://doi.org/10.1007/s11524-022-00699-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11524-022-00699-3

Keywords

Navigation