Skip to main content
Log in

Targeted Therapy for Chordoma: Key Molecular Signaling Pathways and the Role of Multimodal Therapy

  • Systematic Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Background

Chordoma is a rare but devastating tumor that arises in the cranial skull base or spine. There are currently no US Food and Drug Administration-approved targeted therapies for chordoma, and little understanding of whether using more than one therapy has benefit over monotherapy.

Objective

The objective of this study was to systematically review the current status of clinical trials completed for patients with chordoma to determine if multimodal therapy offers a benefit in progression-free survival over monomodal therapy.

Methods

We performed a systematic review of the literature according to Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines to review the available clinical trials of targeted therapy for chordoma. We compiled the clinical data to determine if there is a benefit of multimodal therapy over monotherapy.

Results

Our search resulted in 11 clinical trials including 270 patients with advanced chordoma who were treated with targeted therapies. The most commonly employed targeted therapies acted within the following pathways: platelet-derived growth factor receptor (187 patients), vascular endothelial growth factor (66 patients), and mammalian target of rapamycin (43 patients). Reported progression-free survival for included studies ranged from 2.5 to 58 months, with the longest progression-free survival in a trial that included a platelet-derived growth factor receptor inhibitor, nilotinib, and concurrent radiotherapy (58.2 months). There was a higher range of progression-free survival for trials treating patients with multimodal therapy (10.2–14 months vs 2.5–9.2 months, except for a monotherapy trial published in 2020 with a progression-free survival of 18 months), and those published in 2018 or later (14–58.2 months vs 2.5–10.2 months). Only 23% of patients with chordoma in published clinical trials have been treated with multimodal therapy.

Conclusions

Progression-free survival may be enhanced by the use of targeted therapy with concurrent radiotherapy, use of multimodal therapy, and use of newer targeted therapy. Future clinical trials should consider use of concurrent radiotherapy and multimodal therapy for patients with advanced chordoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Frezza AM, Botta L, Trama A, Dei Tos AP, Stacchiotti S. Chordoma: update on disease, epidemiology, biology and medical therapies. Curr Opin Oncol. 2019;31(2):114–20.

    PubMed  Google Scholar 

  2. McMaster ML, Goldstein AM, Bromley CM, Ishibe N, Parry DM. Chordoma: incidence and survival patterns in the United States, 1973–1995. Cancer Causes Control. 2001;12(1):1–11.

    CAS  PubMed  Google Scholar 

  3. Lee IJ, Lee RJ, Fahim DK. Prognostic factors and survival outcome in patients with chordoma in the United States: a population-based analysis. World Neurosurg. 2017;104:346–55.

    PubMed  Google Scholar 

  4. Akinduro OO, Garcia DP, Domingo RA, Vivas-Buitrago T, Sousa-Pinto B, Bydon M, Clarke MJ, Gokaslan ZL, Kalani MA, Abode-Iyamah K, Quiñones-Hinojosa A. Cervical chordomas multicenter case series and meta-analysis. J Neurooncol. 2021;. https://doi.org/10.1007/s11060-021-03742-6.

    Article  PubMed  Google Scholar 

  5. Pennicooke B, Laufer I, Sahgal A, Varga PP, Gokaslan ZL, Bilsky MH, et al. Safety and local control of radiation therapy for chordoma of the spine and sacrum: a systematic review. Spine. 2016;41(Suppl. 20):S186–92.

    PubMed  PubMed Central  Google Scholar 

  6. Shah SR, David JM, Tippens ND, Mohyeldin A, Martinez-Gutierrez JC, Ganaha S, et al. Brachyury-YAP regulatory axis drives stemness and growth in cancer. Cell Rep. 2017;21(2):495–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hsu W, Mohyeldin A, Shah SR, Gokaslan ZL, Quinones-Hinojosa A. Role of cancer stem cells in spine tumors: review of current literature. Neurosurgery. 2012;71(1):117–25.

    PubMed  Google Scholar 

  8. Catton C, O’Sullivan B, Bell R, Laperriere N, Cummings B, Fornasier V, et al. Chordoma: long-term follow-up after radical photon irradiation. Radiother Oncol. 1996;41(1):67–72.

    CAS  PubMed  Google Scholar 

  9. Sarabia-Estrada R, Ruiz-Valls A, Shah SR, Ahmed AK, Ordonez AA, Rodriguez FJ, et al. Effects of primary and recurrent sacral chordoma on the motor and nociceptive function of hindlimbs in rats: an orthotopic spine model. J Neurosurg Spine. 2017;27(2):215–26.

    PubMed  Google Scholar 

  10. Hsu W, Mohyeldin A, Shah SR, Ap Rhys CM, Johnson LF, Sedora-Roman NI, et al. Generation of chordoma cell line JHC7 and the identification of brachyury as a novel molecular target. J Neurosurg. 2011;115(4):760–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hu Y, Mintz A, Shah SR, Quinones-Hinojosa A, Hsu W. The FGFR/MEK/ERK/brachyury pathway is critical for chordoma cell growth and survival. Carcinogenesis. 2014;35(7):1491–9.

    PubMed  PubMed Central  Google Scholar 

  12. Mathios D, Ruzevick J, Jackson CM, Xu H, Shah SR, Taube JM, et al. PD-1, PD-L1, PD-L2 expression in the chordoma microenvironment. J Neurooncol. 2015;121(2):251–9.

    CAS  PubMed  Google Scholar 

  13. Meng T, Jin J, Jiang C, Huang R, Yin H, Song D, et al. Molecular targeted therapy in the treatment of chordoma: a systematic review. Front Oncol. 2019;9:30.

    PubMed  PubMed Central  Google Scholar 

  14. Bompas E, Le Cesne A, Tresch-Bruneel E, Lebellec L, Laurence V, Collard O, et al. Sorafenib in patients with locally advanced and metastatic chordomas: a phase II trial of the French Sarcoma Group (GSF/GETO). Ann Oncol. 2015;26(10):2168–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lebellec L, Bertucci F, Tresch-Bruneel E, Bompas E, Toiron Y, Camoin L, et al. Circulating vascular endothelial growth factor (VEGF) as predictive factor of progression-free survival in patients with advanced chordoma receiving sorafenib: an analysis from a phase II trial of the French Sarcoma Group (GSF/GETO). Oncotarget. 2016;7(45):73984–94.

    PubMed  PubMed Central  Google Scholar 

  16. Liu C, Jia Q, Wei H, Yang X, Liu T, Zhao J, et al. Apatinib in patients with advanced chordoma: a single-arm, single-centre, phase 2 study. Lancet Oncol. 2020;21(9):1244–52.

    CAS  PubMed  Google Scholar 

  17. George S, Merriam P, Maki RG, Van den Abbeele AD, Yap JT, Akhurst T, et al. Multicenter phase II trial of sunitinib in the treatment of nongastrointestinal stromal tumor sarcomas. J Clin Oncol. 2009;27(19):3154–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.

    PubMed  PubMed Central  Google Scholar 

  19. Stang A. Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.

    PubMed  Google Scholar 

  20. Chugh R, Dunn R, Zalupski MM, Biermann JS, Sondak VK, Mace JR, et al. Phase II study of 9-nitro-camptothecin in patients with advanced chordoma or soft tissue sarcoma. J Clin Oncol. 2005;23(15):3597–604.

    CAS  PubMed  Google Scholar 

  21. Cote GM, Barysauskas CM, DeLaney TF, Schwab J, Raskin K, Lozano-Calderon S, et al. A phase 1 study of nilotinib plus radiation in high-risk chordoma. Int J Radiat Oncol Biol Phys. 2018;102(5):1496–504.

    CAS  PubMed  Google Scholar 

  22. Stacchiotti S, Morosi C, Lo Vullo S, Casale A, Palassini E, Frezza AM, et al. Imatinib and everolimus in patients with progressing advanced chordoma: a phase 2 clinical study. Cancer. 2018;124(20):4056–63.

    CAS  PubMed  Google Scholar 

  23. Adenis A, Ray-Coquard I, Italiano A, Chauzit E, Bui-Nguyen B, Blay JY, et al. A dose-escalating phase I of imatinib mesylate with fixed dose of metronomic cyclophosphamide in targeted solid tumours. Br J Cancer. 2013;109(10):2574–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Macaulay VM, Middleton MR, Eckhardt SG, Rudin CM, Juergens RA, Gedrich R, et al. Phase I dose-escalation study of linsitinib (OSI-906) and erlotinib in patients with advanced solid tumors. Clin Cancer Res. 2016;22(12):2897–907.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Stacchiotti S, Longhi A, Ferraresi V, Grignani G, Comandone A, Stupp R, et al. Phase II study of imatinib in advanced chordoma. J Clin Oncol. 2012;30(9):914–20.

    CAS  PubMed  Google Scholar 

  26. Schuetze SM, Bolejack V, Choy E, Ganjoo KN, Staddon AP, Chow WA, et al. Phase 2 study of dasatinib in patients with alveolar soft part sarcoma, chondrosarcoma, chordoma, epithelioid sarcoma, or solitary fibrous tumor. Cancer. 2017;123(1):90–7.

    CAS  PubMed  Google Scholar 

  27. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92(3):205–16.

    CAS  PubMed  Google Scholar 

  28. Heery CR, Singh BH, Rauckhorst M, Marte JL, Donahue RN, Grenga I, et al. Phase I trial of a yeast-based therapeutic cancer vaccine (GI-6301) targeting the transcription factor brachyury. Cancer Immunol Res. 2015;3(11):1248–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Valentin T, Fournier C, Penel N, Bompas E, Chaigneau L, Isambert N, et al. Sorafenib in patients with progressive malignant solitary fibrous tumors: a subgroup analysis from a phase II study of the French Sarcoma Group (GSF/GETO). Investig New Drugs. 2013;31(6):1626–7.

    CAS  Google Scholar 

  30. Song W, Gobe GC. Understanding molecular pathways and targets of brachyury in epithelial–mesenchymal transition (EMT) in human cancers. Curr Cancer Drug Targets. 2016;16(7):586–93.

    CAS  PubMed  Google Scholar 

  31. Miettinen M, Wang Z, Lasota J, Heery C, Schlom J, Palena C. Nuclear brachyury expression is consistent in chordoma, common in germ cell tumors and small cell carcinomas, and rare in other carcinomas and sarcomas: an immunohistochemical study of 5229 cases. Am J Surg Pathol. 2015;39(10):1305–12.

    PubMed  PubMed Central  Google Scholar 

  32. Hamilton DH, Roselli M, Ferroni P, Costarelli L, Cavaliere F, Taffuri M, et al. Brachyury, a vaccine target, is overexpressed in triple-negative breast cancer. Endocr Relat Cancer. 2016;23(10):783–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Vujovic S, Henderson S, Presneau N, Odell E, Jacques TS, Tirabosco R, et al. Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas. J Pathol. 2006;209(2):157–65.

    CAS  PubMed  Google Scholar 

  34. Yang XR, Ng D, Alcorta DA, Liebsch NJ, Sheridan E, Li S, et al. T (brachyury) gene duplication confers major susceptibility to familial chordoma. Nat Genet. 2009;41(11):1176–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pillay N, Plagnol V, Tarpey PS, Lobo SB, Presneau N, Szuhai K, et al. A common single-nucleotide variant in T is strongly associated with chordoma. Nat Genet. 2012;44(11):1185–7.

    CAS  PubMed  Google Scholar 

  36. Bettegowda C, Yip S, Lo SL, Fisher SG, Boriani S, Rhines LD, et al. Spinal column chordoma: prognostic significance of clinical variables and T (brachyury) gene SNP rs2305089 for local recurrence and overall survival. Neuro Oncol. 2017;19(3):405–13.

    CAS  PubMed  Google Scholar 

  37. Otani R, Mukasa A, Shin M, Omata M, Takayanagi S, Tanaka S, et al. Brachyury gene copy number gain and activation of the PI3K/Akt pathway: association with upregulation of oncogenic Brachyury expression in skull base chordoma. J Neurosurg. 2018;128(5):1428–37.

    CAS  PubMed  Google Scholar 

  38. Roselli M, Fernando RI, Guadagni F, Spila A, Alessandroni J, Palmirotta R, et al. Brachyury, a driver of the epithelial–mesenchymal transition, is overexpressed in human lung tumors: an opportunity for novel interventions against lung cancer. Clin Cancer Res. 2012;18(14):3868–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jian J, Zhong N, Jiang D, Li L, Lou Y, Zhou W, et al. The embryonic transcription factor brachyury confers chordoma chemoresistance via upregulating CA9. Am J Transl Res. 2018;10(3):936–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Magnaghi P, Salom B, Cozzi L, Amboldi N, Ballinari D, Tamborini E, et al. Afatinib is a new therapeutic approach in chordoma with a unique ability to target EGFR and brachyury. Mol Cancer Ther. 2018;17(3):603–13.

    CAS  PubMed  Google Scholar 

  41. Gatti-Mays ME, Strauss J, Donahue RN, Palena C, Del Rivero J, Redman JM, et al. A phase 1 dose escalation trial of BN-CV301, a recombinant poxviral vaccine targeting MUC1 and CEA with costimulatory molecules. Clin Cancer Res. 2019;25(16):4933–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Appiah-Kubi K, Wang Y, Qian H, Wu M, Yao X, Wu Y, et al. Platelet-derived growth factor receptor/platelet-derived growth factor (PDGFR/PDGF) system is a prognostic and treatment response biomarker with multifarious therapeutic targets in cancers. Tumour Biol. 2016;37(8):10053–66.

    CAS  PubMed  Google Scholar 

  43. Zhai Y, Bai J, Wang S, Du J, Wang J, Li C, et al. Differences in dural penetration of clival chordomas are associated with different prognosis and expression of platelet-derived growth factor receptor-beta. World Neurosurg. 2017;98:288–95.

    PubMed  Google Scholar 

  44. Stacchiotti S, Tamborini E, Lo Vullo S, Bozzi F, Messina A, Morosi C, et al. Phase II study on lapatinib in advanced EGFR-positive chordoma. Ann Oncol. 2013;24(7):1931–6.

    CAS  PubMed  Google Scholar 

  45. Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol. 2018;12(1):3–20.

    PubMed  Google Scholar 

  46. Scheipl S, Barnard M, Cottone L, Jorgensen M, Drewry DH, Zuercher WJ, et al. EGFR inhibitors identified as a potential treatment for chordoma in a focused compound screen. J Pathol. 2016;239(3):320–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lebellec L, Chauffert B, Blay JT, Le Cesne A, Chevreau C, Bompas E, et al. Advanced chordoma treated by first-line molecular targeted therapies: outcomes and prognostic factors: a retrospective study of the French Sarcoma Group (GSF/GETO) and the Association des Neuro-Oncologues d’Expression Francaise (ANOCEF). Eur J Cancer. 2017;79:119–28.

    PubMed  Google Scholar 

  48. Chen KW, Yang HL, Lu J, Wang GL, Ji YM, Wu GZ, et al. Expression of vascular endothelial growth factor and matrix metalloproteinase-9 in sacral chordoma. J Neurooncol. 2011;101(3):357–63.

    CAS  PubMed  Google Scholar 

  49. Lapeyre-Prost A, Terme M, Pernot S, Pointet AL, Voron T, Tartour E, et al. Immunomodulatory activity of VEGF in cancer. Int Rev Cell Mol Biol. 2017;330:295–342.

    CAS  PubMed  Google Scholar 

  50. Tauziede-Espariat A, Bresson D, Polivka M, Bouazza S, Labrousse F, Aronica E, et al. Prognostic and therapeutic markers in chordomas: a study of 287 tumors. J Neuropathol Exp Neurol. 2016;75(2):111–20.

    CAS  PubMed  Google Scholar 

  51. Lefebvre V, Dvir-Ginzberg M. SOX9 and the many facets of its regulation in the chondrocyte lineage. Connect Tissue Res. 2017;58(1):2–14.

    CAS  PubMed  Google Scholar 

  52. Sun L, Mathews LA, Cabarcas SM, Zhang X, Yang A, Zhang Y, et al. Epigenetic regulation of SOX9 by the NF-kappaB signaling pathway in pancreatic cancer stem cells. Stem Cells. 2013;31(8):1454–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Capaccione KM, Hong X, Morgan KM, Liu W, Bishop JM, Liu L, et al. Sox9 mediates Notch1-induced mesenchymal features in lung adenocarcinoma. Oncotarget. 2014;5(11):3636–50.

    PubMed  PubMed Central  Google Scholar 

  54. Ling S, Chang X, Schultz L, Lee TK, Chaux A, Marchionni L, et al. An EGFR-ERK-SOX9 signaling cascade links urothelial development and regeneration to cancer. Cancer Res. 2011;71(11):3812–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Leung CO, Mak WN, Kai AK, Chan KS, Lee TK, Ng IO, et al. Sox9 confers stemness properties in hepatocellular carcinoma through Frizzled-7 mediated Wnt/beta-catenin signaling. Oncotarget. 2016;7(20):29371–86.

    PubMed  PubMed Central  Google Scholar 

  56. Chen H, Garbutt CC, Spentzos D, Choy E, Hornicek FJ, Duan Z. Expression and therapeutic potential of SOX9 in chordoma. Clin Cancer Res. 2017;23(17):5176–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Raspaglio G, Petrillo M, Martinelli E, Li Puma DD, Mariani M, De Donato M, et al. Sox9 and Hif-2alpha regulate TUBB3 gene expression and affect ovarian cancer aggressiveness. Gene. 2014;542(2):173–81.

    CAS  PubMed  Google Scholar 

  58. Liu JQ, Zhang QH, Wang ZL. Clinicopathological significance of p16, cyclin D1, Rb and MIB-1 levels in skull base chordoma and chondrosarcoma. World J Otorhinolaryngol Head Neck Surg. 2015;1(1):50–6.

    PubMed  PubMed Central  Google Scholar 

  59. Liu T, Shen JK, Choy E, Zhang Y, Mankin HJ, Hornicek FJ, et al. CDK4 expression in chordoma: a potential therapeutic target. J Orthop Res. 2018;36(6):1581–9.

    CAS  PubMed  Google Scholar 

  60. Choy E, MacConaill LE, Cote GM, Le LP, Shen JK, Nielsen GP, et al. Genotyping cancer-associated genes in chordoma identifies mutations in oncogenes and areas of chromosomal loss involving CDKN2A, PTEN, and SMARCB1. PLoS ONE. 2014;9(7):e101283.

    PubMed  PubMed Central  Google Scholar 

  61. von Witzleben A, Goerttler LT, Marienfeld R, Barth H, Lechel A, Mellert K, et al. Preclinical characterization of novel chordoma cell systems and their targeting by pharmocological inhibitors of the CDK4/6 cell-cycle pathway. Cancer Res. 2015;75(18):3823–31.

    Google Scholar 

  62. Pal I, Mandal M. PI3K and Akt as molecular targets for cancer therapy: current clinical outcomes. Acta Pharmacol Sin. 2012;33(12):1441–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Polivka J Jr, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142(2):164–75.

    CAS  PubMed  Google Scholar 

  64. Presneau N, Shalaby A, Idowu B, Gikas P, Cannon SR, Gout I, et al. Potential therapeutic targets for chordoma: PI3K/AKT/TSC1/TSC2/mTOR pathway. Br J Cancer. 2009;100(9):1406–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen K, Mo J, Zhou M, Wang G, Wu G, Chen H, et al. Expression of PTEN and mTOR in sacral chordoma and association with poor prognosis. Med Oncol. 2014;31(4):886.

    PubMed  Google Scholar 

  66. Trapani D, Conforti F, De Pas T. EGFR inhibition in a pretreated sacral chordoma: a role for erlotinib? Case report and a brief review of literature. Transl Med UniSa. 2017;16:30–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Stacchiotti S, Marrari A, Tamborini E, Palassini E, Virdis E, Messina A, et al. Response to imatinib plus sirolimus in advanced chordoma. Ann Oncol. 2009;20(11):1886–94.

    CAS  PubMed  Google Scholar 

  68. Feng Y, Shen J, Gao Y, Liao Y, Cote G, Choy E, et al. Expression of programmed cell death ligand 1 (PD-L1) and prevalence of tumor-infiltrating lymphocytes (TILs) in chordoma. Oncotarget. 2015;6(13):11139–49.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Quiñones-Hinojosa.

Ethics declarations

Funding

No external funding was used in the preparation of this article.

Conflict of interest

Oluwaseun O. Akinduro, Paola Suarez-Meade, Diogo Garcia, Desmond A. Brown, Rachel Sarabia-Estrada, Steven Attia, Ziya Gokaslan, and Alfredo Quiñones-Hinojosa have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Available upon request and added as ESM.

Code availability

Not applicable.

Authors’ contributions

OOA wrote the manuscript, provided Fig. 2, conducted the literature search, and approved the finalized manuscript. PS provided Fig. 1 and contributed to the editing of the manuscript. DG conducted the literature search and provided the search strategy. DAB conducted the literature search and edited the manuscript. RS, SA, and ZLG critically revised the manuscript. AQ critically revised the manuscript and supervised the study.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 467 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinduro, O.O., Suarez-Meade, P., Garcia, D. et al. Targeted Therapy for Chordoma: Key Molecular Signaling Pathways and the Role of Multimodal Therapy. Targ Oncol 16, 325–337 (2021). https://doi.org/10.1007/s11523-021-00814-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-021-00814-5

Navigation