Skip to main content
Log in

Preclinical and Clinical Advances of Targeted Protein Degradation as a Novel Cancer Therapeutic Strategy: An Oncologist Perspective

  • Review Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

PROteolysis Targeting Chimeras (PROTACs) are a family of heterobifunctional small molecules that specifically target cellular proteins for degradation. Given that their mode of action is distinct from that of small-molecule inhibitors widely used in clinical practice, PROTACs have the potential to improve current cancer therapies. Multiple studies have suggested that PROTACs exhibit enhanced pharmacodynamics and reduced toxicity both in vitro and in vivo compared to clinically relevant small-molecule kinase inhibitors. In addition, PROTACs have been reported to be less prone to mutation-mediated drug resistance in specific disease settings. Since its development in 2001, the field of targeted protein degradation, in which PROTACs are used, has expanded rapidly. However, earlier studies focused on the advancement of the technology itself, while preclinical and clinical data on the disease-modifying effect of PROTACs have only recently been reported. As preclinical and clinical evidence accumulates, the efficacy of PROTACs as targeted therapeutics—distinct from that of small-molecule kinase inhibitors—suggests potential translational benefit in the clinical setting. In this short review, we aim to describe translational potentials of PROTACs. We offer our perspectives as practicing oncologists on the preclinical and clinical data on PROTACs as novel therapeutics for both solid and hematological malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bhullar KS, Lagarón NO, McGowan EM, Parmar I, Jha A, Hubbard BP, et al. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer. 2018;17(1):48.

    PubMed  PubMed Central  Google Scholar 

  2. Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem. 2009;78:477–513.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Komander D, Rape M. The ubiquitin code. Annu Rev Biochem. 2012;81:203–29.

    CAS  PubMed  Google Scholar 

  4. Yau R, Rape M. The increasing complexity of the ubiquitin code. Nat Cell Biol. 2016;18(6):579–86.

    CAS  PubMed  Google Scholar 

  5. Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA. 2001;98(15):8554–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cromm PM, Crews CM. The proteasome in modern drug discovery: second life of a highly valuable drug target. ACS Cent Sci. 2017;3:830–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Burslem GM, Crews CM. Small-molecule modulation of protein homeostasis. Chem Rev. 2017;117:11269–301.

    CAS  PubMed  Google Scholar 

  8. Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A, Dhe-Paganon S, et al. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science. 2015;348(6241):1376–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Raina K, Lu J, Qian Y, Altieri M, Gordon D, Rossi AMK, et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci USA. 2016;113(26):7124–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Scheepstra M, Hekking KFW, van Hijfte L, Folmer RHA. Bivalent ligands for protein degradation in drug discovery. Comput Struct Biotechnol J. 2019;17:160–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bai L, Zhou B, Yang C-Y, Ji J, McEachern D, Przybranowski S, et al. Targeted degradation of BET proteins in triple-negative breast cancer. Cancer Res. 2017;77(9):2476–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gechijian LN, Buckley DL, Lawlor MA, Reyes JM, Paulk J, Ott CJ, et al. Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands. Nat Chem Biol. 2018;14(4):405–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bondeson DP, Mares A, Smith IED, Ko E, Campos S, Miah AH, et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat Chem Biol. 2015;11(8):611–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang X, Crowley VM, Wucherpfennig TG, Dix MM, Cravatt BF. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nat Chem Biol. 2019;5(7):737–46.

    Google Scholar 

  15. He Y, Zhang X, Chang J, Kim HN, Zhang P, Wang Y, et al. Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. Nat Commun. 2020;11(1):1996.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Liao H, Li X, Zhao L, Wang Y, Wang X, Wu Y, et al. A PROTAC peptide induces durable β-catenin degradation and suppresses Wnt-dependent intestinal cancer. Cell Discov. 2020;6:35.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cromm PM, Samarasinghe KTG, Hines J, Crews CM. Addressing kinase-independent functions of Fak via PROTAC-mediated degradation. J Am Chem Soc. 2018;140(49):17019–26.

    CAS  PubMed  Google Scholar 

  18. Murtuza A, Bulbul A, Shen JP, Keshavarzian P, Woodward BD, Lopez-Diaz FJ, et al. Novel third-generation EGFR tyrosine kinase inhibitors and strategies to overcome therapeutic resistance in lung cancer. Cancer Res. 2019;79(4):689–98.

    CAS  PubMed  Google Scholar 

  19. Cheng M, Yu X, Lu K, Xie L, Wang L, Meng F, et al. Discovery of potent and selective epidermal growth factor receptor (EGFR) bifunctional Small-molecule degraders. J Med Chem. 2020;63(3):1216–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Burslem GM, Smith BE, Lai AC, Jaime-Figueroa S, McQuaid DC, Bondeson DP, et al. The advantages of targeted protein degradation over inhibition: an RTK case study. Cell Chem Biol. 2018;25(1):67-77.e3.

    CAS  PubMed  Google Scholar 

  21. Han X-R, Chen L, Wei Y, Yu W, Chen Y, Zhang C, et al. Discovery of selective small molecule degraders of BRAF-V600E. J Med Chem. 2020;63:4069–80.

    CAS  PubMed  Google Scholar 

  22. Posternak G, Tang X, Maisonneuve P, Jin T, Lavoie H, Daou S, et al. Functional characterization of a PROTAC directed against BRAF mutant V600E. Nat Chem Biol. 2020;16(11):1170–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. O’Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol. 2016;13(7):417–30.

    PubMed  Google Scholar 

  24. Brand M, Jiang B, Bauer S, Donovan KA, Liang Y, Wang ES, et al. Homolog-selective degradation as a strategy to probe the function of CDK6 in AML. Cell Chem Biol. 2019;26(2):300-306.e9.

    CAS  PubMed  Google Scholar 

  25. Tovell H, Testa A, Zhou H, Shpiro N, Crafter C, Ciulli A, et al. Design and characterization of SGK3-PROTAC1, an isoform specific SGK3 kinase PROTAC degrader. ACS Chem Biol. 2019;14(9):2024–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hughes SJ, Ciulli A. Molecular recognition of ternary complexes: a new dimension in the structure-guided design of chemical degraders. Essays Biochem. 2017;61(5):505–16.

    PubMed  PubMed Central  Google Scholar 

  27. Gadd MS, Testa A, Lucas X, Chan K-H, Chen W, Lamont DJ, et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat Chem Biol. 2017;13(5):514–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Buhimschi AD, Armstrong HA, Toure M, Jaime-Figueroa S, Chen TL, Lehman AM, et al. Targeting the C481S ibrutinib-resistance mutation in Bruton’s tyrosine kinase using PROTAC-mediated degradation. Biochemistry. 2018;57(26):3564–75.

    CAS  PubMed  Google Scholar 

  29. Bondeson DP, Smith BE, Burslem GM, Buhimschi AD, Hines J, Jaime-Figueroa S, et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem Biol. 2018;25(1):78-87.e5.

    CAS  PubMed  Google Scholar 

  30. Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK, et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 2010;18(6):683–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen H, Chen F, Pei S, Gou S. Pomalidomide hybrids act as proteolysis targeting chimeras: Synthesis, anticancer activity and B-Raf degradation. Bioorg Chem. 2019;87:191–9.

    CAS  PubMed  Google Scholar 

  32. Nowak RP, Deangelo SL, Buckley D, He Z, Donovan KA, An J, et al. Plasticity in binding confers selectivity in ligand-induced protein degradation article. Nat Chem Biol. 2018;14(7):706–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zorba A, Nguyen C, Xu Y, Starr J, Borzilleri K, Smith J, et al. Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc Natl Acad Sci USA. 2018;115(31):E7285–92.

    PubMed  PubMed Central  Google Scholar 

  34. Yang J, Stark GR. Roles of unphosphorylated STATs in signaling. Cell Res. 2008;18(4):443–51.

    CAS  PubMed  Google Scholar 

  35. Bai L, Zhou H, Xu R, Zhao Y, Chinnaswamy K, McEachern D, et al. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell. 2019;36(5):498-511.e17.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kung JE, Jura N. Structural basis for the non-catalytic functions of protein kinases. Structure. 2016;24(1):7–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Potjewyd F, Turner AMW, Beri J, Rectenwald JM, Norris-Drouin JL, Cholensky SH, et al. Degradation of polycomb repressive complex 2 with an EED-targeted bivalent chemical degrader. Cell Chem Biol. 2020;27(1):47-56.e15.

    CAS  PubMed  Google Scholar 

  38. Farnaby W, Koegl M, Roy MJ, Whitworth C, Diers E, Trainor N, et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat Chem Biol. 2019;15:672–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Martin LA, Ribas R, Simigdala N, Schuster E, Pancholi S, Tenev T, et al. Discovery of naturally occurring ESR1 mutations in breast cancer cell lines modelling endocrine resistance. Nat Commun. 2017;8(1):1865.

    PubMed  PubMed Central  Google Scholar 

  40. Toy W, Shen Y, Won H, Green B, Sakr RA, Will M, et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet. 2013;45(12):1439–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gonzalez TL, Hancock M, Sun S, Gersch CL, Larios JM, David W, et al. Targeted degradation of activating estrogen receptor α ligand-binding domain mutations in human breast cancer. Breast Cancer Res Treat. 2020;180:611–22.

    CAS  PubMed  Google Scholar 

  42. Hu J, Hu B, Wang M, Xu F, Miao B, Yang CY, et al. Discovery of ERD-308 as a highly potent proteolysis targeting chimera (PROTAC) degrader of estrogen receptor (ER). J Med Chem. 2019;62(3):1420–42.

    CAS  PubMed  Google Scholar 

  43. Stathis A, Bertoni F. BET proteins as targets for anticancer treatment. Cancer Discov. 2018;8(1):24–36.

    CAS  PubMed  Google Scholar 

  44. Lee BY, Timpson P, Horvath LG, Daly RJ. FAK signaling in human cancer as a target for therapeutics. Pharmacol Ther. 2015;146:132–49.

    CAS  PubMed  Google Scholar 

  45. Landesman-Bollag E, Romieu-Mourez R, Song DH, Sonenshein GE, Cardiff RD, Seldin DC. Protein kinase CK2 in mammary gland tumorigenesis. Oncogene. 2001;20(25):3247–57.

    CAS  PubMed  Google Scholar 

  46. Chen H, Chen F, Liu N, Wang X, Gou S. Chemically induced degradation of CK2 by proteolysis targeting chimeras based on a ubiquitin–proteasome pathway. Bioorg Chem. 2018;81:536–44.

    CAS  PubMed  Google Scholar 

  47. Pinna LA. Protein kinase CK2: a challenge to canons. J Cell Sci. 2002;115(Pt 20):3873–8.

    CAS  PubMed  Google Scholar 

  48. Flanagan J, Qian Y, Gough S, Andreoli M, Bookbinder M, Cadelina G, et al. ARV-471, an oral estrogen receptor PROTAC degrader f or breast cancer. Cancer Res. 2019;79(4_suppl):P5-04-18.

  49. Clinical trial of ARV-471 in patients with ER+/HER2- locally advanced or metastatic breast cancer - full text view - ClinicalTrials.gov [Internet]. https://clinicaltrials.gov/ct2/show/NCT04072952#studydesign

  50. Taylor I. Moving PROTAC® protein degraders from the laboratory to the clinic. 2019. https://ir.arvinas.com/static-files/ce10f577-753f-4063-af5e-403f11f75128.

  51. Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R, et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature. 2014;510(7504):278–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kregel S, Malik R, Asangani IA, Wilder-Romans K, Rajendiran T, Xiao L, et al. Functional and mechanistic interrogation of BET bromodomain degraders for the treatment of metastatic castration-resistant prostate cancer. Clin Cancer Res. 2019;25(13):4038–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Neklesa T, Snyder LB, Willard RR, Vitale N, Pizzano J, Gordon DA, et al. ARV-110: an oral androgen receptor PROTAC degrader for prostate cancer. J Clin Oncol. 2019;37(7_suppl):259.

    Google Scholar 

  54. Petrylak DP, Gao X, Vogelzang NJ, Garfield MH, Taylor I, Dougan Moore M, et al. First-in-human phase I study of ARV-110, an androgen receptor (AR) PROTAC degrader in patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC) following enzalutamide (ENZ) and/or abiraterone (ABI). J Clin Oncol. 2020;38(15_suppl):3500.

    Google Scholar 

  55. Bond MJ, Chu L, Nalawansha DA, Li K, Crews CM. Targeted degradation of oncogenic KRAS G12C by VHL-recruiting PROTACs. ACS Cent Sci. 2020;6(8):1367–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jang J, To C, De Clercq DJH, Park E, Ponthier CM, Shin BH, et al. Mutant-selective allosteric EGFR degraders are effective against a broad range of drug-resistant mutations. Angew Chemie. 2020;59:14481.

    CAS  Google Scholar 

  57. Sun N, Ren C, Kong Y, Zhong H, Chen J, Li Y, et al. Development of a brigatinib degrader (SIAIS117) as a potential treatment for ALK positive cancer resistance. Eur J Med Chem. 2020;193:112190.

    CAS  PubMed  Google Scholar 

  58. Zhang C, Han XR, Yang X, Jiang B, Liu J, Xiong Y, et al. Proteolysis targeting chimeras (PROTACs) of anaplastic lymphoma kinase (ALK). Eur J Med Chem. 2018;151:304–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Powell CE, Gao Y, Tan L, Donovan KA, Nowak RP, Loehr A, et al. Chemically induced degradation of anaplastic lymphoma kinase (ALK). J Med Chem. 2018;61(9):4249–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kang CH, Lee DH, Lee CO, Du Ha J, Park CH, Hwang JY. Induced protein degradation of anaplastic lymphoma kinase (ALK) by proteolysis targeting chimera (PROTAC). Biochem Biophys Res Commun. 2018;505(2):542–7.

    CAS  PubMed  Google Scholar 

  61. Zhang S, Anjum R, Squillace R, Nadworny S, Zhou T, Keats J, et al. The potent ALK inhibitor brigatinib (AP26113) overcomes mechanisms of resistance to first- and second-generation ALK inhibitors in preclinical models. Clin Cancer Res. 2016;22(22):5527–38.

    CAS  PubMed  Google Scholar 

  62. Corcoran RB, Ebi H, Turke AB, Coffee EM, Nishino M, Cogdill AP, et al. EGFR-mediated reactivation of MAPK signaling contributes to insensitivity of BRAF-mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2012;2(3):227–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G, et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.

    CAS  Google Scholar 

  64. Eilers M, Eisenman RN. Myc’s broad reach. Genes Dev. 2008;22(20):2755–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478(7370):524–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Otto C, Schmidt S, Kastner C, Denk S, Kettler J, Müller N, et al. Targeting bromodomain-containing protein 4 (BRD4) inhibits MYC expression in colorectal cancer cells. Neoplasia. 2019;21(11):1110–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cheng J, Li Y, Wang X, Dong G, Sheng C. Discovery of novel PDEδ degraders for the treatment of KRAS mutant colorectal cancer. J Med Chem. 2020;63(14):7892–905.

    CAS  PubMed  Google Scholar 

  68. Burslem GM, Schultz AR, Bondeson DP, Eide CA, Stevens SLS, Druker BJ, et al. Targeting BCR-ABL1 in chronic myeloid leukemia by PROTAC-mediated targeted protein degradation. Cancer Res. 2019;79(18):4744–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhou H, Xu R. Leukemia stem cells: the root of chronic myeloid leukemia. Protein Cell. 2015;6(6):403–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhao Q, Ren C, Liu L, Chen J, Shao Y, Sun N, et al. Discovery of SIAIS178 as an effective BCR-ABL degrader by recruiting von Hippel-Lindau (VHL) E3 ubiquitin ligase. J Med Chem. 2019;62(20):9281–98.

    CAS  PubMed  Google Scholar 

  71. Yang Y, Gao H, Sun X, Sun Y, Qiu Y, Weng Q, et al. Global PROTAC toolbox for degrading BCR-ABL overcomes drug-resistant mutants and adverse effects. J Med Chem. 2020;63(15):8567–83.

    CAS  PubMed  Google Scholar 

  72. Vangamudi B, Paul TA, Shah PK, Kost-Alimova M, Nottebaum L, Shi X, et al. The SMARCA2/4 ATPase domain surpasses the bromodomain as a drug target in SWI/SNF-mutant cancers: Insights from cDNA rescue and PFI-3 inhibitor studies. Cancer Res. 2015;75(18):3865–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Shi J, Whyte WA, Zepeda-Mendoza CJ, Milazzo JP, Shen C, Roe JS, et al. Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev. 2013;27(24):2648–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Qin C, Hu Y, Zhou B, Fernandez-Salas E, Yang CY, Liu L, et al. Discovery of QCA570 as an exceptionally potent and efficacious proteolysis targeting chimera (PROTAC) degrader of the bromodomain and extra-terminal (BET) proteins capable of inducing complete and durable tumor regression. J Med Chem. 2018;61(15):6685–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou B, Hu J, Xu F, Chen Z, Bai L, Fernandez-Salas E, et al. Discovery of a small-molecule degrader of bromodomain and extra-terminal (BET) proteins with picomolar cellular potencies and capable of achieving tumor regression. J Med Chem. 2018;61(2):462–81.

    CAS  PubMed  Google Scholar 

  76. Pillow TH, Adhikari P, Blake RA, Chen J, Del Rosario G, Deshmukh G, et al. Antibody conjugation of a chimeric BET degrader enables in vivo activity. ChemMedChem. 2020;15(1):17–25.

    CAS  PubMed  Google Scholar 

  77. Li Y, Yang J, Aguilar A, McEachern D, Przybranowski S, Liu L, et al. Discovery of MD-224 as a first-in-class, highly potent, and efficacious proteolysis targeting chimera murine double minute 2 degrader capable of achieving complete and durable tumor regression. J Med Chem. 2019;62(2):448–66.

    CAS  PubMed  Google Scholar 

  78. Fu S, Wang Y, Keyomarsi K, Meric-Bernstein F. Strategic development of AZD1775, a Wee1 kinase inhibitor, for cancer therapy. Expert Opin Investig Drugs. 2018;27(9):741–51.

    CAS  PubMed  Google Scholar 

  79. Li Z, Pinch BJ, Olson CM, Donovan KA, Nowak RP, Mills CE, et al. Development and characterization of a Wee1 kinase degrader. Cell Chem Biol. 2020;27(1):57-65.e9.

    CAS  PubMed  Google Scholar 

  80. Khan S, Zhang X, Lv D, Zhang Q, He Y, Zhang P, et al. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat Med. 2019;25(12):1938–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Winter GE, Mayer A, Buckley DL, Erb MA, Roderick JE, Vittori S, et al. BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment. Mol Cell. 2017;67(1):5-18.e19.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Woyach JA, Ruppert AS, Guinn D, Lehman A, Blachly JS, Lozanski A, et al. BTKC481S-mediated resistance to ibrutinib in chronic lymphocytic leukemia. J Clin Oncol. 2017;35(13):1437–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen JG, Liu X, Munshi M, Xu L, Tsakmaklis N, Demos MG, et al. BTK Cys481Ser drives ibrutinib resistance via ERK1/2 and protects BTK wild-type MYD88-mutated cells by a paracrine mechanism. Blood. 2018;131(18):2047–59.

    CAS  PubMed  Google Scholar 

  84. Sun Y, Zhao X, Ding N, Gao H, Wu Y, Yang Y, et al. PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B-cell malignancies. Cell Res. 2018;28(7):779–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Chessum NEA, Sharp SY, Caldwell JJ, Pasqua AE, Wilding B, Colombano G, et al. Demonstrating in-cell target engagement using a pirin protein degradation probe (CCT367766). J Med Chem. 2018;61(3):918–33.

    CAS  PubMed  Google Scholar 

  86. Brand M, Winter GE. Stick it to E3s. Nat Chem Biol. 2019;15:655–6.

    CAS  PubMed  Google Scholar 

  87. Buckley DL, Raina K, Darricarrere N, Hines J, Gustafson JL, Smith IE, et al. HaloPROTACS: use of small molecule PROTACs to Induce degradation of HaloTag fusion proteins. ACS Chem Biol. 2015;10:1831–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Gabizon R, Shraga A, Gehrtz P, Livnah E, Shorer Y, Gurwicz N, et al. Efficient targeted degradation via reversible and irreversible covalent PROTACs. J Am Chem Soc. 2020;142(27):11734–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lu G, Middleton RE, Sun H, Naniong MV, Ott CJ, Mitsiades CS, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of ikaros proteins. Science. 2014;343(6168):305–9.

    CAS  PubMed  Google Scholar 

  90. An J, Ponthier CM, Sack R, Seebacher J, Stadler MB, Donovan KA, et al. PSILAC mass spectrometry reveals ZFP91 as IMiD-dependent substrate of the CRL4 CRBN ubiquitin ligase. Nat Commun. 2017;8:15398.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ottis P, Palladino C, Thienger P, Britschgi A, Heichinger C, Berrera M, et al. Cellular resistance mechanisms to targeted protein degradation converge toward impairment of the engaged ubiquitin transfer pathway. ACS Chem Biol. 2019;14(10):2215–23.

    CAS  PubMed  Google Scholar 

  92. Zhang L, Riley-Gillis B, Vijay P, Shen Y. Acquired resistance to BET-ProTACS (proteolysis-targeting chimeras) caused by genomic alterations in core components of E3 ligase complexes. Mol Cancer Ther. 2019;18(7):1302–11.

    PubMed  Google Scholar 

  93. George AJ, Hoffiz YC, Charles AJ, Zhu Y, Mabb AM. A comprehensive atlas of E3 ubiquitin ligase mutations in neurological disorders. Front Genet. 2018;9:29.

    PubMed  PubMed Central  Google Scholar 

  94. Ward CC, Kleinman JI, Brittain SM, Lee PS, Chung CYS, Kim K, et al. Covalent ligand screening uncovers a RNF4 E3 ligase recruiter for targeted protein degradation applications. ACS Chem Biol. 2019;14:2430–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Spradlin JN, Hu X, Ward CC, Brittain SM, Jones MD, Ou L, et al. Harnessing the anti-cancer natural product nimbolide for targeted protein degradation. Nat Chem Biol. 2019;15:747–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Luo M, Spradlin JN, Brittain SM, McKenna JM, Tallarico JA, Schirle M, et al. Chemoproteomics-enabled ligand screening yields covalent RNF114-based degraders that mimic natural product function. bioRxiv. 2020.

  97. Jiang Y, Deng Q, Zhao H, Xie M, Chen L, Yin F, et al. Development of stabilized peptide-based PROTACs against estrogen receptor α. ACS Chem Biol. 2018;13(3):628–35.

    CAS  PubMed  Google Scholar 

  98. Yamazoe S, Tom J, Fu Y, Wu W, Zeng L, Sun C, et al. Heterobifunctional molecules induce dephosphorylation of kinases-a proof of concept study. J Med Chem. 2020;63(6):2807–13.

    CAS  PubMed  Google Scholar 

  99. Guo WH, Qi X, Yu X, Liu Y, Chung CI, Bai F, et al. Enhancing intracellular accumulation and target engagement of PROTACs with reversible covalent chemistry. Nat Commun. 2020;11(1):4268.

    PubMed  PubMed Central  Google Scholar 

  100. Asatsuma-Okumura T, Ito T, Handa H. Molecular mechanisms of cereblon-based drugs. Pharmacol Ther. 2019;202:132–9.

    CAS  PubMed  Google Scholar 

  101. Neklesa TK, Crews CM. Greasy tags for protein removal. Nature. 2012;487(7407):308–9.

    CAS  PubMed  Google Scholar 

  102. Takahashi D, Moriyama J, Nakamura T, Miki E, Takahashi E, Sato A, et al. AUTACs: cargo-specific degraders using selective autophagy. Mol Cell. 2019;76(5):797-810.e10.

    CAS  PubMed  Google Scholar 

  103. Banik SM, Pedram K, Wisnovsky S, Ahn G, Riley NM, Bertozzi CR. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature. 2020;584(7820):291–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Li Z, Zhu C, Ding Y, Fei Y, Lu B. ATTEC: a potential new approach to target proteinopathies. Autophagy. 2020;16(1):185–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Editorial assistance was provided by the Moffitt Cancer Center’s Office of Scientific Writing by Dr. Paul Fletcher and Daley Drucker. No compensation was given beyond their regular salaries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Xie.

Ethics declarations

Funding

A support grant was received by Dr. Hao Xie from H. Lee Moffitt Cancer Center & Research Institute.

Conflict of interest

The authors, Xinrui Yang, He Yin, Richard D. Kim, Jason B. Fleming, and Hao Xie, declare that they have no conflicts of interest that might be relevant to the contents of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Authors’ contributions

XY contributed to formulating the idea for the manuscript and writing and editing. HX contributed to formulating the idea for the manuscript and editing. HY, RDK, and JBF participated in editing the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Yin, H., Kim, R.D. et al. Preclinical and Clinical Advances of Targeted Protein Degradation as a Novel Cancer Therapeutic Strategy: An Oncologist Perspective. Targ Oncol 16, 1–12 (2021). https://doi.org/10.1007/s11523-020-00782-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-020-00782-2

Navigation