Skip to main content
Log in

Does preclinical analysis based on static loading underestimate post-surgery stem micromotion in THA as opposed to dynamic gait loading?

  • Original article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The success of cementless hip stems depends on the primary stability of the implant quantified by the amount of micromotion at the bone-stem interface. Most finite element (FE)–based preclinical studies on post-surgery stem stability rely on static analysis. Hence, the effect of dynamic gait loading on bone-stem relative micromotion remains virtually unexplored. Furthermore, there is a paucity of research on the primary stability of grooved stems as opposed to plain stem design. The primary aim of this FE study was to understand whether transient dynamic gait had any incremental effect on the net micromotion results and to further draw insights into the effects of grooved texture vis-à-vis a plain model on micromotion and proximal load transfer in host bone. Two musculoskeletal loading regimes corresponding to normal walking (NW) and stair climbing (SC) were considered. Although marginally improved load transfer was predicted proximally for the grooved construct under static loading, the micromotion values (max: NW ~ 7 μm; SC ~ 10 μm) were found to be considerably less in comparison to plain stem (max: NW ~ 50 μm; SC ~ 20 μm). For both physiological load cases, a significant surge in micromotion values was predicted in dynamic analyses as opposed to static analyses for the grooved stem (~ 390% greater). For the plain model, the increase in these values from static to dynamic loading is relatively moderate yet clinically significant (~ 230% greater). This suggests that the qualitative similarities notwithstanding, there were significant dissimilarities in the quantitative trends of micromotion for different cases under both analyses.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Khanuja HS, Vakil JJ, Goddard MS et al (2011) Cementless femoral fixation in total hip arthroplasty. J Bone Jt Surg - Ser A 93:500–509. https://doi.org/10.2106/jbjs.j.00774

    Article  Google Scholar 

  2. Wechter J, Comfort TK, Bs SM et al (2013) Improved survival of uncemented versus cemented femoral stems in patients aged 70 years in a community total joint registry. Clin Orthop Relat Res 471:3588–3595. https://doi.org/10.1007/s11999-013-3182-5

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stea S, Bordini B, Sudanese A et al (2009) Acta Orthopaedica Scandinavica registration of hip prostheses at the Rizzoli Institute: 11 years experience. https://doi.org/10.1080/000164702760379549

  4. Pilliar RM, Lee JM, Maniatopoulos C et al (1986) Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res 208:108–113. https://doi.org/10.1097/00003086-198607000-00023

    Article  Google Scholar 

  5. Bendich I, Lawrie CM, Riegler BSV et al (2022) The impact of component design and fixation on stress shielding after modern total knee arthroplasty. J Arthroplasty 37(6):221–225

    Article  Google Scholar 

  6. Martelli S, Taddei F, Cristofolini L et al (2011) Extensive risk analysis of mechanical failure for an epiphyseal hip prosthesis: a combined numerical-experimental approach. Proc. Inst. Mech Eng Part H J Eng Med 225:126–140. https://doi.org/10.1243/09544119jeim728

    Article  CAS  Google Scholar 

  7. Viceconti M, Brusi G, Pancanti A et al (2006) Primary stability of an anatomical cementless hip stem: a statistical analysis. J Biomech 39:1169–1179. https://doi.org/10.1016/j.jbiomech.2005.03.024

    Article  PubMed  Google Scholar 

  8. Geng X, Li Y, Feng Li et al (2020) A new 3D printing porous trabecular titanium metal acetabular cup for primary total hip arthroplasty: a minimum 2-year follow-up of 92 consecutive patients. J Orthopaedic Surg Res 15:383. https://doi.org/10.1186/s13018-020-01913-1

    Article  Google Scholar 

  9. Maloney WJ, Jasty M, Burke DW et al (1989) Biomechanical and histologic investigation of cemented total hip arthroplasties. A study of autopsy-retrieved femurs after in vivo cycling. Clin Orthop Relat Res 249:129–140. https://doi.org/10.1097/00003086-198912000-00015

    Article  Google Scholar 

  10. Loon JV, Vervest AMJS, van der Vis HM et al (2021) Ceramic-on-ceramic articulation in press-fit total hip arthroplasty as a potential reason for early failure, what about the survivors: a ten year follow-up. Int Orthopaedics 45:1447–1454. https://doi.org/10.1007/s00264-020-04895-1

    Article  Google Scholar 

  11. Sobel SM, Ruhr M, Neumann F et al (2022) Densification of cancellous bone with autologous particles can enhance the primary stability of uncemented implants by increasing the interface friction coefficient. Journal of Biomechanics 139:111149. https://doi.org/10.1016/j.jbiomech.2022.111149

    Article  Google Scholar 

  12. Soballe K, Brockstedt-Rasmussen H, Hansen ES et al (1992) Hydroxyapatite coating modifies implant membrane formation: controlled micromotion studied in dogs. Acta Orthop 63:128–140. https://doi.org/10.3109/17453679209154808

    Article  CAS  Google Scholar 

  13. Manley PA, Vanderby R, Kohles S et al (1995) Alterations in femoral strain, micromotion, cortical geometry, cortical porosity, and bony ingrowth in uncemented collared and collarless prostheses in the dog. J Arthroplasty 10:63–73. https://doi.org/10.1016/s0883-5403(05)80102-0

    Article  CAS  PubMed  Google Scholar 

  14. Bragdon CR, Burke D, Lowenstein JD et al (1996) Differences in stiffness between a cementless and cancellous bone into varying amounts of the interface porous implant vivo in dogs due implant motion. Clin Orthop 11:945–951. https://doi.org/10.1016/s0883-5403(96)80136-7

    Article  CAS  Google Scholar 

  15. Duyck J, Vandamme K, Geris L et al (2006) The influence of micro-motion on the tissue differentiation around immediately loaded cylindrical turned titanium implants. Arch Oral Biol 51:1–9. https://doi.org/10.1302/0301-620x.75b5.8397213

    Article  CAS  PubMed  Google Scholar 

  16. Soballe K, Toksvig-Larsen S, Gelineck J et al (1993) Migration of hydroxyapatite-coated femoral prostheses. J Bone Jt Surg - Ser B 75:681–687. https://doi.org/10.1302/0301-620x.75b5.8397213

    Article  CAS  Google Scholar 

  17. Jasty M, Bragdon C, Burke D et al (1997) In vivo skeletal responses to porous-surfaced implants subjected to small induced motions. J Bone Jt Surg - Ser A 79:707–714. https://doi.org/10.2106/00004623-199705000-00010

    Article  CAS  Google Scholar 

  18. Engh CA, O’Connor D, Jasty M et al (1992) Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses - PubMed. Clin Orthop Relat Res 285: 13–29 https://pubmed.ncbi.nlm.nih.gov/1446429/

  19. Soballe K, Hansen ES, Rasmussen HB (1992) Tissue ingrowth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical conditions. J Orthop Res 10(2):285–299. https://doi.org/10.1002/jor.1100100216

    Article  CAS  PubMed  Google Scholar 

  20. Kohli N, Stoddart JC, Van Arkel RJ (2021) The limit of tolerable micromotion for implant osseointegration: a systematic review. Sci Reports 11:10797. https://doi.org/10.1038/s41598-021-90142-5

    Article  CAS  Google Scholar 

  21. Goodman S, Wang JS, Doshi A et al (1993) Difference in bone ingrowth after one versus two daily episodes of micromotion: experiments with titanium chambers in rabbits. J Biomed Mater Res 27:1419–1424. https://doi.org/10.1002/jbm.820271109

    Article  CAS  PubMed  Google Scholar 

  22. Goodman S, Toksvig-Larsen S, Aspenberg P et al (1993) Ingrowth of bone into pores in titanium chambers implanted in rabbits: effect of pore cross-sectional shape in the presence of dynamic shear. J Biomed Mater Res 27:247–253. https://doi.org/10.1002/jbm.820270215

    Article  CAS  PubMed  Google Scholar 

  23. Goodman SB, Song Y, Doshi A (1994) Cessation of strain facilitates bone formation in the micromotion chamber implanted in the rabbit tibia. Biomaterials 15:889–893. https://doi.org/10.1016/0142-9612(94)90112-0

    Article  CAS  PubMed  Google Scholar 

  24. Siebers HL, Eschweiler J, Michalik R et al (2022) Biomechanical compensation mechanisms during stair climbing – the effect of leg length inequalities. Gait Posture 91:290–296

    Article  PubMed  Google Scholar 

  25. Radaelli M, Buchalter DB, Mont MA et al (2022) A new classification system for cementless femoral stems in total hip arthoplasty. J Arthroplasty. https://doi.org/10.1016/j.arth.2022.09.014

    Article  PubMed  Google Scholar 

  26. Harman MK, Toni A, Cristofolini L et al (1995) Initial stability of uncemented hip stems: an in-vitro protocol to measure torsional interface motion. Med Eng Phys 17:163–171. https://doi.org/10.1016/1350-4533(95)95705-f

    Article  CAS  PubMed  Google Scholar 

  27. Monti L, Cristofolini L, Viceconti M (1999) Methods for quantitative analysis of the primary stability in uncemented hip prostheses. Artif Organs 23:851–859. https://doi.org/10.1046/j.1525-1594.1999.06287.x

    Article  CAS  PubMed  Google Scholar 

  28. Rothstock S, Uhlenbrock A, Bishop N (2010) Primary stability of uncemented femoral resurfacing implants for varying interface parameters and material formulations during walking and stair climbing. J Biomech 43:521–526. https://doi.org/10.1016/j.jbiomech.2009.09.052

    Article  PubMed  Google Scholar 

  29. Ovesy M, Zysset PK (2022) Explicit non-linear finite element analysis for prediction of primary stability in uncemented total hip arthroplasty. Comput Methods, Imaging Visualization Biomechanics Biomed Eng II 38:128–142. https://doi.org/10.1007/978-3-031-10015-4_12

    Article  Google Scholar 

  30. Wu L, Li S, Zhang B et al (2021) The advances of topology optimization techniques in orthopedic implants: a review. Med Biol Eng Compu 59:1673–1689. https://doi.org/10.1007/s11517-021-02361-7

    Article  Google Scholar 

  31. Pettersen SH, Wik TS, Skallerud B (2009) Subject-specific finite element analysis of implant stability for a cementless femoral stem. Clin Biomech 24:480–487. https://doi.org/10.1016/j.clinbiomech.2009.03.009

    Article  Google Scholar 

  32. Jamali AA, Lozynsky AJ, Harris WH et al (2006) The effect of surface finish and of vertical ribs on the stability of a cemented femoral stem: an in vitro stair climbing test. J Arthroplasty 21:122–128. https://doi.org/10.1016/j.arth.2005.05.018

    Article  PubMed  Google Scholar 

  33. Falkenberg A, Biller S, Morlock MM et al (2020) Micromotion at the head-stem taper junction of total hip prostheses is influenced by prosthesis design-, patient- and surgeon-related factors. J. Biomech. 98:109424. https://doi.org/10.1016/j.jbiomech.2019.109424

    Article  PubMed  Google Scholar 

  34. Bah MT, Nair PB, Browne M (2009) Mesh morphing for finite element analysis of implant positioning in cementless total hip replacements. Med Eng Phys 31:1235–1243. https://doi.org/10.1016/j.medengphy.2009.08.001

    Article  PubMed  Google Scholar 

  35. Bah MT, Nair PB, Taylor M et al (2011) Efficient computational method for assessing the effects of implant positioning in cementless total hip replacements. J Biomech 44:1417–1422. https://doi.org/10.1016/j.jbiomech.2010.12.027

    Article  PubMed  Google Scholar 

  36. Andreaus U, Colloca M (2009) Prediction of micromotion initiation of an implanted femur under physiological loads and constraints using the finite element method. Proc Inst Mech Eng Part H J Eng Med 223:589–605. https://doi.org/10.1243/2F09544119JEIM559

    Article  CAS  Google Scholar 

  37. Abdul-Kadir MR, Hansen U, Klabunde R et al (2008) Finite element modeling of primary hip stem stability: the effect of interference fit. J Biomech 41:587–594. https://doi.org/10.1016/j.jbiomech.2007.10.009

    Article  PubMed  Google Scholar 

  38. Tarala M, Janssen D, Telka A et al (2011) Experimental versus computational analysis of micromotions at the implant-bone interface. Proc. Inst. Mech Eng Part H J Eng Med 225:9–15. https://doi.org/10.1243/09544119jeim825

    Article  Google Scholar 

  39. Park Y, Shin HC, Choi DO et al (2008) Primary stability of cementless stem in THA improved with reduced interfacial gaps. J. Biomech. Eng. 130(2):021008. https://doi.org/10.1115/1.2898761

    Article  PubMed  Google Scholar 

  40. Al-Dirini RMA, Daniel H, Zhang Ju et al (2018) Influence of collars on the primary stability of cementless femoral stems: a finite element study using a diverse patient cohort. J Orthop Res 36:1185–1195. https://doi.org/10.1002/jor.23744

    Article  CAS  PubMed  Google Scholar 

  41. Howard JL, Hui AJ, Bourne AJ et al (2004) A quantitative analysis of bone support comparing cementless tapered and distal fixation total hip replacements. J Arthroplasty 19:266–273. https://doi.org/10.1016/j.arth.2003.09.011

    Article  PubMed  Google Scholar 

  42. Al-Dirini RMA, Martelli S, O’Rourke D et al (2019) Virtual trial to evaluate the robustness of cementless femoral stems to patient and surgical variation. J Biomech 82:346–356. https://doi.org/10.1016/j.jbiomech.2018.11.013

    Article  PubMed  Google Scholar 

  43. Reimeringer M, Nuño N (2016) The influence of contact ratio and its location on the primary stability of cementless total hip arthroplasty: a finite element analysis. J Biomech 49:1064–1070. https://doi.org/10.1016/j.jbiomech.2016.02.031

    Article  CAS  PubMed  Google Scholar 

  44. Shim J, Iwaya C, Ambrose CG et al (2022) Micro-computed tomography assessment of bone structure in aging mice. Sci Rep 12:8117. https://doi.org/10.1038/s41598-022-11965-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Götze C, Steens W, Vieth V et al (2002) Primary stability in cementless femoral stems: custom-made versus conventional femoral prosthesis. Clin Biomech 17:267–273. https://doi.org/10.1016/s0268-0033(02)00012-8

    Article  Google Scholar 

  46. Reggiani B, Cristofolini L, Varini E et al (2007) Predicting the subject-specific primary stability of cementless implants during pre-operative planning: preliminary validation of subject-specific finite-element models. J Biomech 40:2552–2558. https://doi.org/10.1016/j.jbiomech.2006.10.042

    Article  CAS  PubMed  Google Scholar 

  47. Baleani M, Cristofolini L, Toni A (2000) Initial stability of a new hybrid fixation hip stem: experimental measurement of implant-bone micromotion under torsional load in comparison with cemented and cementless stems. J Biomed Mater Res 50:605–615. https://doi.org/10.1002/(sici)1097-4636(20000615)50:4/3C605::aid-jbm17/3E3.0.co;2-p

    Article  CAS  PubMed  Google Scholar 

  48. Ellenrieder M, Souffrant R, Schulze C et al (2020) Micromotion and subsidence of a cementless conical fluted stem depending on femoral defect size – a human cadaveric study. Clin. Biomech. 80:105202. https://doi.org/10.1016/j.clinbiomech.2020.105202

    Article  Google Scholar 

  49. Bühler DW, Oxland TR, Nolte LP et al (1997) Design and evaluation of a device for measuring three-dimensional micromotions of press-fit femoral stem prostheses. Med Eng Phys 19:187–199. https://doi.org/10.1016/s1350-4533(96)00060-4

    Article  PubMed  Google Scholar 

  50. Speirs AD, Slomczykowski MA, Orr TE et al (2000) Three-dimensional measurement of cemented femoral stem stability: an in-vitro cadaver study. Clin Biomech 15:248–255. https://doi.org/10.1016/s0268-0033(99)00079-0

    Article  CAS  Google Scholar 

  51. Westphal FM, Bishop N, Honl M et al (2006) Migration and cyclic motion of a new short-stemmed hip prosthesis - a biomechanical in vitro study. Clin Biomech 21:834–840. https://doi.org/10.1016/j.clinbiomech.2006.04.004

    Article  CAS  Google Scholar 

  52. Malfroy Camine V, Rüdiger HA, Pioletti DP et al (2016) Full-field measurement of micromotion around a cementless femoral stem using micro-CT imaging and radiopaque markers. J Biomech 49:4002–4008. https://doi.org/10.1016/j.jbiomech.2016.10.029

    Article  CAS  PubMed  Google Scholar 

  53. Gortchacow M, Wettstein M, Pioletti DP et al (2012) Simultaneous and multisite measure of micromotion, subsidence and gap to evaluate femoral stem stability. J Biomech 45:1232–1238. https://doi.org/10.1016/j.jbiomech.2012.01.040

    Article  PubMed  Google Scholar 

  54. Pancanti A, Bernakiewicz M, Viceconti M (2003) The primary stability of a cementless stem varies between subjects as much as between activities. J Biomech 36:777–785. https://doi.org/10.1016/s0021-9290(03)00011-3

    Article  PubMed  Google Scholar 

  55. Kanaizumi A, Suzuki D, Nagoya S et al (2022) Patient-specific three-dimensional evaluation of interface micromotion in two different short stem designs in cementless total

  56. Chethan KN, Bhat NS, Zaher M et al (2021) Finite element analysis of hip implant with varying in taper neck lengths under static loading conditions. Computer Methods and Programs in Biomedicine 208:106273. https://doi.org/10.1016/j.cmpb.2021.106273

    Article  CAS  PubMed  Google Scholar 

  57. Chae SW, Lee JH, Choi HY (2006) Biomechanical study on distal filling effects in cementless total hip replacement. JSME International Journal Series A 49: 147–156. https://ui.adsabs.harvard.edu/link_gateway/2006JSMEA..49..147C/https://doi.org/10.1299/jsmea.49.147

  58. Østbyhaug PO, Klaksvik J, Romundstad P et al (2010) Primary stability of custom and anatomical uncemented femoral stems. A method for three-dimensional in vitro measurement of implant stability. Clin Biomech 25:318–324. https://doi.org/10.1016/j.clinbiomech.2009.12.012

    Article  Google Scholar 

  59. Viceconti M, Cristofolini L, Baleani M et al (2001) Pre-clinical validation of a new partially cemented femoral prosthesis by synergetic use of numerical and experimental methods. J Biomech 34:723–731. https://doi.org/10.1016/s0021-9290(01)00029-x

    Article  CAS  PubMed  Google Scholar 

  60. Al-Dirini RMA, Martelli S, Huff D et al (2018) Evaluating the primary stability of standard vs lateralized cementless femoral stems – a finite element study using a diverse patient cohort. Clin Biomech 59:101–109. https://doi.org/10.1016/j.clinbiomech.2018.09.002

    Article  Google Scholar 

  61. Amirouche F, Solitro G, Walia A et al (2016) No effect of femoral offset on bone-implant micromotion in an experimental model. Orthop Traumatol Surg Res 102:379–385

    Article  CAS  PubMed  Google Scholar 

  62. Ishaque (2022) Short stem for total hip arthroplasty (THA) – overview, patient selection and perspectives by using the metha® hip stem system. Orthop Res Rev 14:77–89. https://doi.org/10.2147/ORR.S233054

    Article  PubMed  PubMed Central  Google Scholar 

  63. Huiskes R (1982) On the modelling of long bones in structural analyses. J Biomech 15:65–69. https://doi.org/10.1016/0021-9290(82)90036-7

    Article  CAS  PubMed  Google Scholar 

  64. Huiskes R, Janssen JD, Slooff TJ (1981) Detailed comparison of experimental and theoretical stress-analyses of a human femur. Am Soc Mechanical Eng, Appl Mechanics Division, AMD 45:211–234

    Google Scholar 

  65. Piao C, Wu D, Luo M et al (2014) Stress shielding effects of two prosthetic groups after total hip joint simulation replacement. J Orthop Surg Res 9:1–8. https://doi.org/10.1186/s13018-014-0071-x

    Article  Google Scholar 

  66. Karachalios T, Tsatsaronis C, Efraimis G et al (2004) The long-term clinical relevance of calcar atrophy caused by stress shielding in total hip arthroplasty: a 10-year prospective randomized study. J Arthroplasty 19:469–475. https://doi.org/10.1016/j.arth.2003.12.081

    Article  PubMed  Google Scholar 

  67. Wick M, Lester DK et al (2004) Radiological changes in second and third-generation Zweymüller stems. J Bone Jt Surg - Ser B 86:1108–1114. https://doi.org/10.1302/0301-620x.86b8.14732

    Article  CAS  Google Scholar 

  68. Decking R, Puhl W, Simon U et al (2006) Changes in strain distribution of loaded proximal femora caused by different types of cementless femoral stems. Clin Biomech 21:495–501. https://doi.org/10.1016/j.clinbiomech.2005.12.011

    Article  Google Scholar 

  69. Arabnejad S, Johnston B, Tanzer M et al (2017) Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J Orthop Res 35:1774–1783. https://doi.org/10.1002/jor.23445

    Article  CAS  PubMed  Google Scholar 

  70. Vail TP, Glisson RR, Koukoubis TD et al (1998) The effect of hip stem material modulus on surface strain in human femora. J Biomech 31:619–628. https://doi.org/10.1016/s0021-9290(98)00061-x

    Article  CAS  PubMed  Google Scholar 

  71. Yamako G, Janssen D, Hanada S et al (2017) Improving stress shielding following total hip arthroplasty by using a femoral stem made of β type Ti-33.6Nb-4Sn with Young’s modulus gradation. J Biomech 63:135–143. https://doi.org/10.1016/j.jbiomech.2017.08.017

    Article  PubMed  Google Scholar 

  72. Hanada S, Masahashi N, Jung TK et al (2014) Fabrication of a high-performance hip prosthetic stem using β Ti-33.6Nb-4Sn. J Mech Behav Biomed Mater 30:140–149. https://doi.org/10.1016/j.jmbbm.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  73. Guo L, Naghavi SA, Wang Z et al (2022) On the design evolution of hip implants: a review. Mater Des 21:110552

    Article  Google Scholar 

  74. Weinans H, Huiskes R, Grootenboer HJ et al (1992) Effects of material properties of femoral hip components on bone remodeling. J Orthop Res 10:845–853. https://doi.org/10.1002/jor.1100100614

    Article  CAS  PubMed  Google Scholar 

  75. Glassman AH, Bobyn JD, Tanzer M et al (2006) New femoral designs: do they influence stress shielding? Clin. Orthop. Relat. Res. 64–74. https://doi.org/10.1097/01.blo.0000246541.41951.20.

  76. Heyland M, Checa S, Kendoff D et al (2019) Anatomic grooved stem mitigates strain shielding compared to established total hip arthroplasty stem designs in finite-element models. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-018-36503-z

    Article  CAS  Google Scholar 

  77. Heller MO, Bergmann G, Deuretzbacher G et al (2001) Musculoskeletal loading conditions at the hip during walking and stair climbing. J Biomech 34:883–893. https://doi.org/10.1016/s0021-9290(01)00039-2

    Article  CAS  PubMed  Google Scholar 

  78. Taylor ME, Tanner KE, Freeman MA et al (1997) Stress and strain distribution within the intact femur: compression or bending? Med Eng Phys 19:122–131. https://doi.org/10.1016/1350-4533(95)00031-3

    Article  Google Scholar 

  79. No title. www.sawbones.com.

  80. Parida SP, Jena PC, Das SR, Dhupal D, Dash RR (2021) Comparative stress analysis of different suitable biomaterials for artificial hip joint and femur bone using finite element simulation. Adv Mater Process Technol. https://doi.org/10.1080/2374068X.2021.1949541

    Article  Google Scholar 

  81. Gokhale NS, Deshpande SS, Bedekar SV (2008) Practical finite element analysis. Finite to Infinite.

  82. Heller MO, Bergmann G, Kassi JP et al (2005) Determination of muscle loading at the hip joint for use in pre-clinical testing. J Biomech 38:1155–1163. https://doi.org/10.1016/j.jbiomech.2004.05.022

    Article  CAS  PubMed  Google Scholar 

  83. Mishra P, Singh U, Pandey CM, Mishra P, Pandey G (2019) Application of Student’s t-test, analysis of variance, and covariance. Ann Card Anaesth 22:407–411

    Article  PubMed  PubMed Central  Google Scholar 

  84. Two-sample t-test. https://www.mathworks.com/help/stats/ttest2.html. (accessed on 14th Nov. 2022)

  85. Pradhan S, Das SR, Jena PC, Dhupal D (2021) Investigations on surface integrity in hard turning of functionally graded specimen under nano fluid assisted minimum quantity lubrication. Adv Mater Process Technol. https://doi.org/10.1080/2374068X.2021.1948706

    Article  Google Scholar 

  86. Jena P.C., Identification of crack in SiC composite polymer beam using vibration signature, Journal of Materials Today: Proceedings, Volume 5, Issue 9, Part 3, 19693–19702, ISSN 2214–7853, 2018.

  87. Parida SP, Jena PC (2022) Selective layer-by-layer fillering and its effect on the dynamic response of laminated composite plates using higher-order theory. J Vibration Control 5:25. https://doi.org/10.1177/2F10775463221081180

    Article  Google Scholar 

  88. Parida SP, Jena PC (2019) Design and finite element analysis of thick walled laminated composite pressure vessel, International Journal of Innovative Technology and Exploring Engineering 8 (10)

  89. Kassi JP, Heller MO, Stoeckle U et al (2005) Stair climbing is more critical than walking in pre-clinical assessment of primary stability in cementless THA in vitro. J Biomech 38:1143–1154. https://doi.org/10.1016/j.jbiomech.2004.05.023

    Article  PubMed  Google Scholar 

  90. Viceconti M, Muccini R, Bernakiewicz M et al (2000) Large sliding contact elements accurately predict levels of bone–implant micromotion relevant to osseointegration. J Biomech 33:611–1618. https://doi.org/10.1016/s0021-9290(00)00140-8

    Article  Google Scholar 

  91. Chanda S, Mukherjee K, Gupta S et al (2020) A comparative assessment of two designs of hip stem using rule-based simulation of combined osseointegration and remodeling. Proc IMechE Part H: J Eng Med 234(1):118–128. https://doi.org/10.1177/0954411919890998

    Article  Google Scholar 

  92. Dickinson AS, Taylor AC, Browne M (2010) Performance of the resurfaced hip Part 1 the influence of the prosthesis size and positioning on the remodelling and fracture of the femoral neck. Proceed Instit Mechanical Eng Part H J Eng Med 224:427–439. https://doi.org/10.1243/2F09544119JEIM679

    Article  CAS  Google Scholar 

  93. Morgan EF, Unnikrisnan GU, Hussein AI et al (2018) Bone mechanical properties in healthy and diseased states. Annu Rev Biomed Eng 20:119–143. https://doi.org/10.1146/2Fannurev-bioeng-062117-121139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kajzer J, Tanaka E, Yamada H (2000) Human biomechanics and injury prevention. https://doi.org/10.1007/978-4-431-66967-8

  95. Morgan EF, Bayraktar HH, Keaveny TM (2003) Trabecular bone modulus–density relationships depend on anatomic site. J Biomech 36:897–904. https://doi.org/10.1016/s0021-9290(03)00071-x

    Article  PubMed  Google Scholar 

  96. Dickinson AS, Taylor AC, Ozturk H et al (2011) Experimental validation of a finite element model of the proximal femur using digital image correlation and a composite bone model. J Biomech Eng 133(1):014504. https://doi.org/10.1115/1.4003129

    Article  CAS  PubMed  Google Scholar 

  97. Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8:393–396. https://doi.org/10.1016/0021-9290(75)90075-5

    Article  CAS  PubMed  Google Scholar 

  98. Broeke RHM, Tarala M, Arts JJ et al (2014) Improving peri-prosthetic bone adaptation around cementless hip stems: a clinical and finite element study. Med Eng Phys 36:345–353. https://doi.org/10.1016/j.medengphy.2013.12.006

    Article  PubMed  Google Scholar 

  99. van Rietbergen B, Huiskes R, Weinans H (1995) The role of trabecular architecture in the anisotropic mechanical properties of bone, in Bone Structure and Remodeling. H., Eds., World Scientific, Singapore.

  100. Ladd AJ, Kinney JH, Haupt DL et al (1998) Finite-element modeling of trabecular bone: comparison with mechanical testing and determination of tissue modulus. J Orthop Res 16:622. https://doi.org/10.1002/jor.1100160516

    Article  CAS  PubMed  Google Scholar 

  101. Hou FJ, Lang SM, Hoshaw SJ et al (1998) Human vertebral body apparent and hard tissue stiffness. J Biomech 31:1009. https://doi.org/10.1016/s0021-9290(98)00110-9

    Article  CAS  PubMed  Google Scholar 

  102. Chanda S, Gupta S, Pratihar DP (2016) Effects of interfacial conditions on shape optimization of cementless hip stem: an investigation based on a hybrid framework. Struct Multidisc Optim 53:1143–1155. https://doi.org/10.1007/s00158-015-1382-1

    Article  Google Scholar 

  103. Rubin PJ, Rakotomanana RL, Leyvraz PF et al (1993) Frictional interface micromotions and anisotropic stress distribution in a femoral total hip component. J Biomech 26:725–739. https://doi.org/10.1016/0021-9290(93)90035-d

    Article  CAS  PubMed  Google Scholar 

  104. Levadnyi I, Awrejcewicz J, Goethel MF et al (2017) Influence of the fixation region of a press–fit hip endoprosthesis on the stress-strain state of the “bone-implant” system. Comput Biol Med 84:195–204. https://doi.org/10.1016/j.compbiomed.2017.03.030

    Article  PubMed  Google Scholar 

  105. Goshulak P, Samiezadeh S, Aziz MSR et al (2016) The biomechanical effect of anteversion and modular neck offset on stress shielding for short-stem versus conventional long-stem hip implants. Med Eng Phys 38:232–240. https://doi.org/10.1016/j.medengphy.2015.12.005

    Article  PubMed  Google Scholar 

  106. Kim YH, Kim JS, Cho SH (2001) Strain distribution in the proximal human femur. An in vitro comparison in the intact femur and after insertion of reference and experimental femoral stems. J Bone Jt Surg - Ser B 83:295–301. https://doi.org/10.1302/0301-620x.83b2.10108

    Article  CAS  Google Scholar 

  107. Aamodt A, Lund-Larsen J, Eine J et al (2002) Mechanical stability of custom and anatomical femoral stems: an experimental study in human femora. HIP Int 12:263–273. https://doi.org/10.5301/hip.2008.4719

    Article  CAS  PubMed  Google Scholar 

  108. Aamodt A, Lund-Larsen J, Eine J et al (2001) Changes in proximal femoral strain after insertion of uncemented standard and customized femoral stems. An experimental study in human femora. J Bone Jt Surg Br 83:921–929. https://doi.org/10.1302/0301-620x.83b6.9726

    Article  CAS  Google Scholar 

  109. Biegler FB, Reuben JD, Harrigan TP et al (1995) Effect of Porous Coating and loading conditions on total hip femoral stem stability. J Arthroplasty 10:839–847. https://doi.org/10.1016/s0883-5403(05)80084-1

    Article  CAS  PubMed  Google Scholar 

  110. Burke DW, O’Connor DO, Zalenski EB et al (1991) Micromotion of cemented and uncemented femoral components. J Bone Jt Surg - Ser B 73:33–37. https://doi.org/10.1302/0301-620x.73b1.1991771

    Article  CAS  Google Scholar 

  111. Jasty M, Burke D, Harris WH (1992) Biomechanics of cemented and cementless prostheses. J Bone Jt Surg Br 77:349–358

    CAS  Google Scholar 

  112. Frost HM (1994) Wolff’s law and bone’s structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod 64(3):175–188. https://doi.org/10.1043/0003-3219(1994)064/3C0175:wlabsa/3E2.0.co;2

    Article  CAS  PubMed  Google Scholar 

  113. Joshi MG, Advani SG, Miller F et al (2000) Analysis of a femoral hip prosthesis designed to reduce stress shielding. J Biomech 33:1655–1662. https://doi.org/10.1016/s0021-9290(00)00110-x

    Article  CAS  PubMed  Google Scholar 

  114. Berzins A, Sumner DR, Andriacchi TP et al (1993) Stem curvature and load angle Influence the initial relative bone-implant motion of cementless femoral stems. J Orthop Res 11(758):769. https://doi.org/10.1002/jor.1100110518

    Article  Google Scholar 

  115. Heller MO, Kassi JP, Perka C et al (2005) Cementless stem fixation and primary stability under physiological-like loads in vitro. Biomed Technik 50:394–399. https://doi.org/10.1515/bmt.2005.054

    Article  CAS  Google Scholar 

  116. Yamako G, Chosa E, Totoribe K et al (2014) In-vitro biomechanical evaluation of stress shielding and initial stability of a low-modulus hip stem made of type Ti-33.6Nb-4Sn alloy. Med Eng Phys 36:1665–1671. https://doi.org/10.1016/j.medengphy.2014.09.002

    Article  PubMed  Google Scholar 

  117. Fottner A, Woiczinski M, Kistler M et al (2018) Varus malalignment of cementless hip stems provides sufficient primary stability but highly increases distal strain distribution. Clin Biomech 58:14–20. https://doi.org/10.1016/j.clinbiomech.2018.07.006

    Article  Google Scholar 

  118. Campbell D, Mercer G, Nilsson KG et al (2011) Early migration characteristics of a hydroxyapatite-coated femoral stem: an RSA study. Int. Orthop. 35:483–488. https://doi.org/10.1007/2Fs00264-009-0913-z

    Article  PubMed  Google Scholar 

  119. Froimson MI, Garino J, Machenaud A et al (2007) Minimum 10-year results of a tapered, titanium, hydroxyapatite-coated hip stem. an independent review. J Arthroplasty 22:1–7. https://doi.org/10.1016/j.arth.2006.03.003

    Article  PubMed  Google Scholar 

  120. Hardy DC, Frayssinet P, Guilhem A et al (1991) Bonding hydroxyapatite-coated prostheses cases femoral. J Bone Jt Surg Br 73:732–740. https://doi.org/10.1302/0301-620x.73b5.1654335

    Article  CAS  Google Scholar 

  121. Yee AJ, Kreder HK, Bookman I et al (1999) A randomized trial of hydroxyapatite coated prostheses in total hip arthroplasty. Clin Orthop Relat Res 366:120–132. https://doi.org/10.1097/00003086-199909000-00016

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the computational facilities available at the Biomechanics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, India, which has helped to carry out this research study. The authors are also thankful to Mr. S. K. Banerji, Founder, Orthotech India Pvt. Ltd., Valsad, Gujarat, for his invaluable input.

Funding

The study has been partially supported by the SERB, India (Grant no. SRG/2019/000235).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souptick Chanda.

Ethics declarations

Ethics approval

Not required.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vio War, A.S., Kumar, N. & Chanda, S. Does preclinical analysis based on static loading underestimate post-surgery stem micromotion in THA as opposed to dynamic gait loading?. Med Biol Eng Comput 61, 1473–1488 (2023). https://doi.org/10.1007/s11517-023-02801-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02801-6

Keywords

Navigation