Skip to main content
Log in

Theoretical evaluation of enhanced gold nanoparticle delivery to PC3 tumors due to increased hydraulic conductivity or recovered lymphatic function after mild whole body hyperthermia

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The objective of this study is to investigate the effect of hyperthermia-induced improvement of hydraulic conductivity and lymphatic function on both tumoral IFP reduction and nanoparticle delivery to PC3 tumors. We developed a theoretical model for nanoparticle transport in a tumor incorporating Starling’s law, Darcy’s law, transient convection, and diffusion of chemical species in porous media, and nanoparticle accumulation in tumors. Results have shown that both mechanisms were effective to decrease the IFP at the tumor center from 1600 Pa in the control without heating to 800 Pa in tumors with whole body heating. IFP reductions not only elevate the nanoparticle concentration in the tumor, but also result in a more uniform nanoparticle concentration in the tumor than that in the control without heating. Due to the IFP reductions at the tumor center and/or local blood perfusion increases, the final amount of accumulated nanoparticles in the tumor increased by more than 35–95% when compared to the control without heating. We conclude that increases in the hydraulic conductivity and recovery of lymphatic functions are possible mechanisms that lead to IFP reductions and enhancement in nanoparticle deposition in PC3 tumors observed in our in vivo experimental studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

D eff :

Diffusion coefficient of nanoparticles in the porous tumor, m2/s

C :

Concentration of nanoparticles in the porous tumor, mol/m3

C p :

Concentration of nanoparticles in the capillaries of tumors, mol/m3

p :

Interstitial fluid pressure in the tumor, Pa

p blood :

Blood pressure in capillary, Pa

V f,r :

Interstitial fluid velocity in the radial direction, m/s

K t :

Hydraulic conductivity of the porous tumor, m2/Pa s

S/V :

Surface area of capillaries per unit volume of the tumor, 1/m

S LY/V :

Surface area of lymphatic vessels per unit volume of the tumor, 1/m

L p :

Hydraulic permeability of the capillary wall, m/Pa s

L LY :

Hydraulic permeability of the lymphatic vessel wall, m/Pa s

\( {\dot{M}}_{\mathrm{acc}} \) :

Accumulation rate of nanoparticles in the entire tumor, mol/s

M acc :

Amount of nanoparticle deposition in the tumor, mol

k f :

Deposition rate coefficient of nanoparticles attached to tumor cells, 1/s

p LY :

Lymphatic hydrostatic pressure, Pa

r :

Coordinate in the radial direction in spherical coordinates, m

R :

Radius of the tumor, m

t :

Time, s

ε :

Porosity of the tumor

ϕ :

Fluid source or sink term in Darcy’s law,1/s

\( \dot{C} \) :

Source or sink term of nanoparticles in porous media, mol/m3·s

σ t :

Osmotic reflection coefficient for plasma proteins for tumors

σ f :

Filtration reflection coefficient through either the capillary or lymphatic vessel walls

π :

Osmotic pressure in the interstitial space of tumors, Pa

πblood :

Osmotic pressure in the capillaries of tumors, Pa

τ :

Time constant, s

blood:

Blood

LY:

Lymphatic

acc:

Accumulation

References

  1. Stylianopoulos T, Munn LL, Jain RK (2018) Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside. Trends Cancer 4(4):292–319

    Article  CAS  Google Scholar 

  2. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW (2016) Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1(5):1–12

    Article  Google Scholar 

  3. Baish JW, Netti PA, Jain RK (1997) Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors. Microvasc Res 53:128–141

    Article  CAS  Google Scholar 

  4. Baxter LT, Jain RK (1989) Transport of fluid and macromolecules in tumors I. Role of interstitial pressure and convection. Microvasc Res 37:77–104

    Article  CAS  Google Scholar 

  5. Koning GA, Eggermont AMM, Lindner LH (1750–1754) T.L.M ten Hagen, Hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors. Pharm Res 27(2010)

  6. Ahmed M, Goldberg SN (2004) Combination radiofrequency thermal ablation and adjuvant IV liposomal doxorubicin increases tissue coagulation and intratumoural drug accumulation. Int J Hyperth 20:781–802

    Article  CAS  Google Scholar 

  7. Osborne EJ, MacKillop WJ (1987) The effect of exposure to elevated temperatures on membrane permeability to adriamycin in Chinese hamster ovary cells in vitro. Cancer Lett 37:213–224

    Article  CAS  Google Scholar 

  8. Kawai H, Minamiya Y, Kitamura M, Matsuzaki I, Hashimoto M, Suzuki H, Abo S (1997) Direct measurement of doxorubicin concentration in the intact, living single cancer cell during hyperthermia. Cancer 79:214–219

    Article  CAS  Google Scholar 

  9. Merlin JL, Marchal S, Ramacci C, Notter D, Vigneron C (1993) Reversal of multidrug resistance by thermosensitive liposome-encapsulated doxorubicin combined with hyperthermia. Proc Ann Meeting Am Assoc Cancer Res 34:A1901

    Google Scholar 

  10. Toffoli G, Bevilacqua C, Franceschin A, Boiocchi M (1989) Effect of hyperthermia on intracellular drug accumulation and chemosensitivity in drug-sensitive and drug-resistant P388 leukaemia cell lines. Int J Hyperth 5:163–172

    Article  CAS  Google Scholar 

  11. Leunig M, Goetz AE, Dellian M, Zetterer G, Gamarra F, Jain RK, Messmer K (1992) Interstitial fluid pressure in solid tumors following hyperthermia: possible correlation with therapeutic response. Cancer Res 52:487–490

    CAS  PubMed  Google Scholar 

  12. Hauck ML, Dewhirst MW, Bigner DD, Zalutsky MR (1997) Local hyperthermia improves uptake of a chimeric monoclonal antibody in a subcutaneous xenograft model. Clin Cancer Res 3:63–70

    CAS  PubMed  Google Scholar 

  13. Hauck ML, Coffin DO, Dodge RK, Dewhirst MW, Mitchell JB, Zalutsky MR (1997) A local hyperthermia treatment which enhances antibody uptake in a glioma xenograft model does not affect tumor interstitial fluid pressure. Int J Hyperth 13:307–316

    Article  CAS  Google Scholar 

  14. Stepleton S, Dunne M, Milosevic M, Tran CW, Gold MJ, Vedadi A, Mckee TD, Ohashi PS, Allen C, Jaffray DA (2018) Radiation and heat improve the delivery and efficacy of nanotherapeutics by modulating intratumoral fluid dynamic. ACS Nano 12:7583–7600

    Article  Google Scholar 

  15. Lammers T, Peschke P, Kühnlein R, Subr V, Ulbrich K, Debus J, Huber P, Hennink W, Storm G (2007) Effect of radiotherapy and hyperthermia on the tumor accumulation of HPMA copolymer-based drug delivery systems. J Control Release 117:333–341

    Article  CAS  Google Scholar 

  16. Li L, ten Hagen TLM, Bolkestein M, Gasselhuber A, Yatvin J, van Rhoon GC, Eggermont AMM, Haemmerich D, Koning GA (2013) Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia. J Control Release 167:130–137

    Article  CAS  Google Scholar 

  17. Sen A, Capitano ML, Spernyak JA, Schueckler JT, Thomas S, Singh AK, Evans SS, Hylander BL, Repasky EA (2011) Mild elevation of body temperature reduces tumor interstitial fluid pressure and hypoxia and enhances efficacy of radiotherapy in murine tumor models. Cancer Res 71(11):3872–3880

    Article  CAS  Google Scholar 

  18. Winslow TB, Eranki A, Ullas S, Singh AK, Repasky EA, Sen A (2015) A pilot study of the effects of mild systemic heating on human head and neck tumour xenografts: analysis of tumour perfusion, interstitial fluid pressure, hypoxia and efficacy of radiation therapy. Int J Hyperth 31:693–701

    Article  CAS  Google Scholar 

  19. Gu Q, Liu S, Saha Ray A, Florinas S, Christie RJ, Daniel M-C, Bieberich C, Ma R, Zhu L (2020) Mild whole body hyperthermia induced interstitial fluid pressure (IFP) reduction and enhanced nanoparticle delivery to PC3 tumors: in vivo studies and MicroCT analyses. ASME J Therm Sci Eng Appl 12:061001(1-10)

    Article  Google Scholar 

  20. Gu Q, Dockery L, Liu S, Daniel M-C, Bieberich C, Ma R, Zhu L (2019) Enhanced gold nanoparticle delivery to PC3 tumors by whole body hyperthermia using ICP-MS quantification of gold, Annual Meeting of the Biomedical Engineering Society (BMES) October 16-19. Philidiaphia, PA

  21. El-kareh AW, Secomb TW (1995) Effect of increasing vascular hydraulic conductivity on delivery of macromolecular drugs to tumor cells. Int J Radiat Oncol Biol Phys 32(5):1419–1423

    Article  CAS  Google Scholar 

  22. Su D, Ma R, Salloum M, Zhu L (2010) Multi-scale study of nanoparticle transport and deposition in tissues during an injection process. Med Biol Eng Comput 48:853–863

    Article  Google Scholar 

  23. Stapleton S, Milosevic M, Allen C, Zheng J, Dunne M, Yeung I, Jaffray DA (2013) A mathematical model of the enhanced permeability and retention effect for liposome transport in solid tumors. PLoS ONE 8(12):e81157. https://doi.org/10.1371/journal.pone.0081157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chakraborty S, Ozkan A, Rylander MN, Woodward WA, Vlachos P (2019) Mixture theory modeling for characterizing solute transport in breast tumor tissues. J Biol Eng 13(46):1–16

    Google Scholar 

  25. Truskey GA, Yuan F, Katz DF (2009) Transport phenomena in biological systems, 2nd Edition. Prentice Hall, Upper Saddle River

    Google Scholar 

  26. Khaled A-RA, Vafai K (2003) The role of porous media in modeling flow and heat transfer in biological tissues. Int J Heat Mass Transf 46(26):4989–4500

    Article  Google Scholar 

  27. Ma R, Su D, Zhu L (2012) Multiscale simulation of nanoparticle transport in deformable tissue during an infusion process in hyperthermia treatments of cancers. In: Minkowycz WJ, Sparrow E, Abraham JP (eds) Nanoparticle Heat Transfer and Fluid Flow, Computational & Physical Processes in Mechanics & Thermal Science Series, vol 4. CRC Press, Taylor & Francis Group. https://doi.org/10.1201/b12983-4

  28. Hoshyar N, Gray S, Han H, Bao G (2016) The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11(6):673–692

    Article  CAS  Google Scholar 

  29. Moghadam MC, Deyranlou A, Sharifi A, Niazmand H (2015) Numerical simulation of the tumor interstitial fluid transport: consideration of drug delivery mechanism. Microvasc Res 101:62–71

    Article  CAS  Google Scholar 

  30. Pishko GL, Astary GW, Mareci TH, Sarntinoranont M (2011) Sensitivity analysis of an image-based solid tumor computational model with heterogeneous vasculature and porosity. Ann Biomed Eng 39(9):2360–2373

    Article  Google Scholar 

  31. Schuff MM, Gore JP, Nauman EA (2013) A mixture theory model of fluid and solute transport in the microvasculature of normal and malignant tissues. II: factor sensitivity analysis, calibration, and validation. J Math Biol 67:1307–1337

    Article  CAS  Google Scholar 

  32. Zhang A, Mi X, Yang G, Xu LX (2009) Numerical study of thermally targeted liposomal drug delivery in tumor. ASME J Heat Transfer 131(4):043209

    Article  Google Scholar 

  33. Curti BD, Urba WJ, Alvord WG, Janik JE, Smith JW 2nd, Madara K, Longo DL (1993) Interstitial pressure of subcutaneous nodules in melanoma and lymphoma patients: changes during treatment. Cancer Res 53:2204–2207

    CAS  PubMed  Google Scholar 

  34. Milosevic M, Fyles A, Hedley D, Pintilie M, Levin W, Manchul L, Hill R (2001) Interstitial fluid pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen measurements. Cancer Res 61:6400–6405

    CAS  PubMed  Google Scholar 

  35. Zhu L (2010) Recent developments in biotransport. ASME J Thermodyn Sci Eng Appl 2(4):040801(1-11)

    Google Scholar 

  36. Heldin CH, Rubin K, Pietras K, Ostman A (2004) High interstitial fluid pressure — an obstacle in cancer therapy. Nat Rev 4:806–813

    Article  CAS  Google Scholar 

  37. Willett GG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, Mino M, Cohen KS, Scadden DT, Hartford AC, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Chen HX, Shellito PC, Lauwers GY, Jain RK (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147

    Article  CAS  Google Scholar 

  38. Pietras K, Rubin K, Sjöblom T, Buchdunger E, Sjöquist M, Heldin C-H, Östman A (2002) Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res 62:5476–5484

    CAS  PubMed  Google Scholar 

  39. Berg A, Ekwall AK, Rubin K, Stjernschantz J, Reed RK (1998) Effect of PGE1, PGI2, and PGA analogs on EF2 collagen gel compaction in vitro and interstitial pressure in vivo. Am J Physiol 274:H663–H671

    Article  CAS  Google Scholar 

  40. Mariana VF, Maria de Fátima GG, Maria P (2011) The effect of mechanical lymph drainage accompanied with heat on lymphedema. J Res Med Sci 16(11):1448–1451

    PubMed  PubMed Central  Google Scholar 

  41. Swartz MA, Lund AW (2012) Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer 12:210–219

    Article  CAS  Google Scholar 

  42. Pathak AP, Artemov D, Neeman M, Bhujwalla ZM (2006) Lymph node metastasis in breast cancer xenografts is associated with increased regions of extravascular drain, lymphatic vessel area, and invasive phenotype. Cancer Res 66(10):5151–5158

    Article  CAS  Google Scholar 

  43. Singh M, Gu Q, Ma R, Zhu L (2020) Heating protocol design affected by nanoparticle redistribution and thermal damage model in magnetic nanoparticle hyperthermia for cancer treatment. ASME J Heat Transfer 142(7):072501(1-9)

    Article  Google Scholar 

Download references

Acknowledgments

The research was performed in partial fulfilment of the requirements for the PhD degree in Mechanical Engineering by Manpreet Singh from the University of Maryland Baltimore County, Baltimore, Maryland, USA.

Funding

This research was supported by a National Science Foundation research grant CBET-1705538.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Ma, R. & Zhu, L. Theoretical evaluation of enhanced gold nanoparticle delivery to PC3 tumors due to increased hydraulic conductivity or recovered lymphatic function after mild whole body hyperthermia. Med Biol Eng Comput 59, 301–313 (2021). https://doi.org/10.1007/s11517-020-02308-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02308-4

Keywords

Navigation