Skip to main content

Advertisement

Log in

Using nonlinear finite element models to analyse stress distribution during subluxation and torque required for dislocation of newly developed total hip structure after prosthetic impingement

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Dislocation is a serious potential complication of total hip replacement. Previous studies have proposed a newly developed total hip structure that meets the required oscillation angle of 120°, for which the chamfer on the acetabular liner rim was designed to enable the neck to impinge on the chamfer over a large area after impingement occurs. This study adopted the finite element method to further analyse the torque limits leading to dislocation and the contact stresses at the impingement and egress sites of the liner during subluxation. The compressive stress–strain curve for ultra-high molecular weight polyethylene is nonlinear. The results reveal that an adequate chamfer angle of the acetabular cup liner can significantly increase dislocation torque and decrease contact stress on the liner rim. By means of the new design, when the head–neck ratio (HNR) is 2.5 or 3.0, the maximum torque value that a 36-mm head can withstand is 1.38 (8.7 Nm/6.3 Nm) or 1.47 (8.4 Nm/5.7 Nm) times that of a 22-mm head, while the maximum stress of a 36-mm head is 0.41 (14.58 MPa/35.73 MPa) or 0.70 (33.71 MPa/47.90 MPa) times that of a 22-mm head. When the head diameters are identical, the dislocation torque of the HNR = 2.5 structure is slightly greater than that of the HNR = 3.0 structure (3.3–10.5%); thus, the newly developed structure can disperse contact stress, and the structure of a large head with a low HNR exhibits a higher dislocation torque value and lower stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abraham R, Malkani AL (2005) Instability after total hip replacement. Semin Arthroplasty 16:132–141. doi:10.1053/j.sart.2005.06.002

    Article  Google Scholar 

  2. Ali Khan MA, Brakenbury PH, Reynolds IS (1981) Dislocation following total hip replacement. J Bone Joint Surg Br 63:214–218

    PubMed  Google Scholar 

  3. Barrack RL (2003) Dislocation after total hip arthroplasty: implant design and orientation. J Am Acad Orthop Surg 11:89–99

    Article  PubMed  Google Scholar 

  4. Barrack RL, Thornberry RL, Ries MD, Lavernia C, Tozakoglou E (2001) The effect of component design on range of motion to impingement in total hip arthroplasty. Instr Course Lect 50:275–280

    CAS  PubMed  Google Scholar 

  5. Bartz RL, Noble PC, Kadakia NR, Tullos HS (2000) The effect of femoral component head size on posterior dislocation of the artificial hip joint. J Bone Joint Surg Am 82:1300–1307

    Article  CAS  PubMed  Google Scholar 

  6. Bennett D, Humphreys L, O’Brien S, Kelly C, Orr JF, Beverland DE (2008) Wear paths produced by individual hip-replacement patients—a large-scale, long-term follow-up study. J Biomech 41:2474–2482

    Article  CAS  PubMed  Google Scholar 

  7. Besong A, Jin ZM, Fisher J (2000) Analysis of micro-separation and contact mechanics between the femoral head and the acetabular cup in artificial hip joint replacements. In: 47th annual meeting of the orthopaedic research society, pp 1051

  8. Bistolfi A, Crova M, Rosso F, Titolo P, Ventura S, Massazza G (2011) Dislocation rate after hip arthroplasty within the first postoperative year: 36 mm versus 28 mm femoral heads. Hip Int 21:559–564. doi:10.5301/HIP.2011.8647

    Article  PubMed  Google Scholar 

  9. Brand RA, Crowninshield RD, Wittstock CE, Pedersen DR, Clark CR, van Krieken FM (1982) A model of lower extremity muscular anatomy. J Biomech Eng 104:304–310

    Article  CAS  PubMed  Google Scholar 

  10. Brand RA, Pedersen DR, Davy DT, Kotzar GM, Hieple KG, Goldberg VM (1994) Comparison of hip force calculations and measurements in the same patient. J Arthroplast 9:45–51

    Article  CAS  Google Scholar 

  11. Brien WW, Salvati EA, Wright TM, Burstein AH (1993) Dislocation following THA: comparison of two acetabular component designs. Orthopedics 16:869–872. doi:10.3928/0147-7447-19930801-04

    CAS  PubMed  Google Scholar 

  12. Brown TD, Callaghan JJ (2008) (ii) Impingement in total hip replacement: mechanisms and consequences. Curr Orthop 22:376–391. doi:10.1016/j.cuor.2008.10.009

    Article  PubMed  PubMed Central  Google Scholar 

  13. Burroughs BR, Hallstrom B, Golladay GJ, Hoeffel D, Harris WH (2005) Range of motion and stability in total hip arthroplasty with 28-, 32-, 38-, and 44-mm femoral head sizes: an in vitro study. J Arthroplast 20:11–19. doi:10.1016/j.arth.2004.07.008

    Article  Google Scholar 

  14. Byström S, Espehaug B, Furnes O, Havelin LI (2003) Femoral head size is a risk factor for total hip luxation: a study of 42,987 primary hip arthroplasties from the Norwegian Arthroplasty Register. Acta Orthop Scand 74:514–524. doi:10.1080/00016470310017893

    Article  PubMed  Google Scholar 

  15. Clarke IC, Manley MT (2008) How do alternative bearing surfaces influence wear behavior. J Am Acad Orthop Surg 16:S86–S93

    Article  PubMed  Google Scholar 

  16. Cobb TK, Morrey BF, Ilstrup DM (1996) The elevated-rim acetabular liner in total hip arthroplasty: relationship to postoperative dislocation. J Bone Joint Surg Am 78:80–86

    Article  CAS  PubMed  Google Scholar 

  17. Cobb TK, Morrey BF, Ilstrup DM (1997) Effect of the elevated-rim acetabular liner on loosening after total hip arthroplasty. J Bone Joint Surg Am 79:1361–1364

    Article  CAS  PubMed  Google Scholar 

  18. Conroy JL, Whitehouse SL, Graves SE, Pratt NL, Ryan P, Crawford RW (2008) Risk factors for revision for early dislocation in total hip arthroplasty. J Arthroplast 23:867–872. doi:10.1016/j.arth.2007.07.009

    Article  Google Scholar 

  19. Cuckler JM, Moore KD, Lombardi AVJ, McPherson E, Emerson R (2004) Large versus small femoral heads in metal-on-metal total hip arthroplasty. J Arthroplast 19:41–44. doi:10.1016/j.arth.2004.09.006

    Article  Google Scholar 

  20. D’Lima DD, Chen PC, Colwell CWJ (2001) Optimizing acetabular component position to minimize impingement and reduce contact stress. J Bone Joint Surg Am 83:87–91

    Article  PubMed  Google Scholar 

  21. Dudda M, Gueleryuez A, Gautier E, Busato A, Roeder C (2010) Risk factors for early dislocation after total hip arthroplasty: a matched case-control study. J Orthop Surg (Hong Kong) 18:179–183

    Article  Google Scholar 

  22. Enocson A, Pettersson H, Ponzer S, Törnkvist H, Dalén N, Tidermark J (2009) Quality of life after dislocation of hip arthroplasty: a prospective cohort study on 319 patients with femoral neck fractures with a one-year follow-up. Qual Life Res 18:1177–1184. doi:10.1007/s11136-009-9531-x

    Article  PubMed  Google Scholar 

  23. Fialho JC, Fernandes PR, Eca L, Folgado J (2007) Computational hip joint simulator for wear and heat generation. J Biomech 40:2358–2366

    Article  PubMed  Google Scholar 

  24. Gilbert BJ, Hartman CW, Paprosky WG (2009) Contrained liners in revision total hip arthroplasty: an overuse syndrome - affirms. Semin Arthroplasty 20:85–88. doi:10.1053/j.sart.2008.11.015

    Article  Google Scholar 

  25. Gonzalez Della Valle A, Ruzo PS, Li S, Pellicci P, Sculco TP, Salvati EA (2001) Dislodgment of polyethylene liners in first and second-generation Harris–Galante acetabular components. J Bone Joint Surg Am 83:553–559

    Article  PubMed  Google Scholar 

  26. Grigoris P, Grecula MJ, Amstutz HC (1994) Dislocation of a total hip arthroplasty caused by iliopsoas tendon displacement. Clin Orthop Rel Res 306:132–135

    Google Scholar 

  27. Hailer NP, Weiss RJ, Stark A, Kärrholm J (2012) The risk of revision due to dislocation after total hip arthroplasty depends on surgical approach, femoral head size, sex, and primary diagnosis- An analysis of 78,098 operations in the Swedish Hip Arthroplasty Register. Acta Orthop 83:442–448. doi:10.3109/17453674.2012.733919

    Article  PubMed  PubMed Central  Google Scholar 

  28. Harris WH (1995) The problem is osteolysis. Clin Orthop Rel Res 311:46–53

    Google Scholar 

  29. Higa M, Tanino H, Abo M, Kakunai S, Banks SA (2011) Effect of acetabular component anteversion on dislocation mechanisms in total hip arthroplasty. J Biomech 44:1810–1813. doi:10.1016/j.jbiomech.2011.04.002

    Article  PubMed  Google Scholar 

  30. Jameson SS, Lees D, James P, Serrano-Pedraza I, Partington PF, Muller SD, Meek RMD, Reed MR (2011) Lower rates of dislocation with increased femoral head size after primary total hip replacement: a five-year analysis of NHS patients in England. J Bone Joint Surg Br 93:876–880. doi:10.1302/0301-620X.93B7.26657

    Article  CAS  PubMed  Google Scholar 

  31. Kang L, Galvin AL, Fisher J, Jin Z (2009) Enhanced computational prediction of polyethylene wear in hip joints by incorporating cross-shear and contact pressure in additional to load and sliding distance: effect of head diameter. J Biomech 42:912–918

    Article  PubMed  Google Scholar 

  32. Kim YH, Choi Y, Kim JS (2009) Influence of patient-, design-, and surgery-related factors on rate of dislocation after primary cementless total hip arthroplasty. J Arthroplast 24:1258–1263. doi:10.1016/j.arth.2009.03.017

    Article  Google Scholar 

  33. Kluess D, Martin H, Mittelmeier W, Schmitz KP, Bader R (2007) Influence of femoral head size on impingement, dislocation and stress distribution in total hip replacement. Med Eng Phys 29:465–471. doi:10.1016/j.medengphy.2006.07.001

    Article  PubMed  Google Scholar 

  34. Ko BH, Yoon YS (2008) Optimal orientation of implanted components in total hip arthroplasty with polyethylene on metal articulation. Clin Biomech 23:996–1003. doi:10.1016/j.clinbiomech.2008.04.012

    Article  Google Scholar 

  35. Kotwal RS, Ganapathim M, John A, Maheson M, Jones SA (2009) Outcome of treatment for dislocation after primary total hip replacement. J Bone Joint Surg Br 91:321–326. doi:10.1302/0301-620X.91B3.21274

    Article  CAS  PubMed  Google Scholar 

  36. Lin HC, Chi WM, Ho YJ, Chen JH (2013) Effects of design parameters of total hip components on the impingement angle and determination of the preferred liner skirt shape with an adequate oscillation angle. Med Biol Eng Comput 51:397–404. doi:10.1007/s11517-012-1008-3

    Article  PubMed  Google Scholar 

  37. Lin HC, Chi WM, Ho YJ, Lin CC, Chen JH (2015) Theoretical analysis of total hip dislocation and comparison of hemispherical cup and newly developed cup. J Med Biol Eng 35:661–669. doi:10.1007/s40846-015-0073-0

    Article  CAS  Google Scholar 

  38. Lin HC, Luo TL, Chen JH (2012) Wear analysis of chamfered elongated acetabular cup liners. Med Biol Eng Comput 50:253–260. doi:10.1007/s11517-011-0852-x

    Article  PubMed  Google Scholar 

  39. Matsoukas G, Kim IY (2009) Design optimization of a total hip prosthesis for wear reduction. J Biomech Eng 131:051003(051001–051012). doi:10.1115/1.3049862

  40. Matsushita A, Nakashima Y, Jingushi S, Yamamoto T, Kuraoka A, Iwamoto Y (2009) Effects of the femoral offset and the head size on the safe range of motion in total hip arthroplasty. J Arthroplast 24:646–651. doi:10.1016/j.arth.2008.02.008

    Article  Google Scholar 

  41. McCollum DE, Gray WJ (1990) Dislocation after total hip arthroplasty- causes and prevention. Clin Orthop Rel Res 261:159–170

    Google Scholar 

  42. Nadzadi ME, Pedersen DR, Callaghan JJ, Brown TD (2002) Effects of acetabular component orientation on dislocation propensity for small-head-size total hip arthroplasty. Clin Biomech 17:32–40. doi:10.1016/S0268-0033(01)00096-1

    Article  Google Scholar 

  43. Nadzadia ME, Pedersena DR, Yack HJ, Callaghan JJ, Brown TD (2003) Kinematics, kinetics, and finite element analysis of commonplace maneuvers at risk for total hip dislocation. J Biomech 36:577–591. doi:10.1016/S0021-9290(02)00232-4

    Article  Google Scholar 

  44. Padgett DE, Lipman J, Robie B, Nestor B (2006) Influence of total hip design on dislocation. Clin Orthop Rel Res 447:48–52. doi:10.1097/01.blo.0000218748.30236.40

    Article  Google Scholar 

  45. Peter R, Lubbeke A, Stern R, Hoffmeyer P (2011) Cup size and risk of dislocation after primary total hip arthroplasty. J Arthroplast 26:1305–1309. doi:10.1016/j.arth.2010.11.015

    Article  Google Scholar 

  46. Prendergast PJ (1997) Finite element models in tissue mechanics and orthopaedic implant design. Clin Biomech 12:343–366. doi:10.1016/S0268-0033(97)00018-1

    Article  CAS  Google Scholar 

  47. Raut VV, Siney PD, Wroblewski BM (1995) Cemented revision for aseptic acetabular loosening: a review of 387 hips. J Bone Joint Surg Br 77:357–361

    CAS  PubMed  Google Scholar 

  48. Sanchez-Sotelo J, Berry DJ (2001) Epidemiology of instability after total hip replacement. Orthop Clin North Am 32:543–552

    Article  CAS  PubMed  Google Scholar 

  49. Scifert CF, Brown TD, Lipman JD (1999) Finite element analysis of a novel design approach to resisting total hip dislocation. Clin Biomech 14:697–703. doi:10.1016/S0268-0033(99)00054-6

    Article  CAS  Google Scholar 

  50. Scifert CF, Brown TD, Pedersen DR, Callaghan JJ (1998) A finite element analysis of factors influencing total hip dislocation. Clin Orthop Rel Res 355:152–162

    Article  Google Scholar 

  51. Shon WY, Baldini T, Peterson MG, Wright TM, Salvati EA (2005) Impingement in total hip arthroplasty: a study of retrieved acetabular components. J Arthroplast 20:427–435. doi:10.1016/j.arth.2004.09.058

    Article  Google Scholar 

  52. Sikes CV, Lai LP, Schreiber M, Mont MA, Jinnah RH, Seyler TM (2008) Instability after total hip arthroplasty: treatment with large femoral heads vs constrained liners. J Arthroplast 23:59–63. doi:10.1016/j.arth.2008.06.032

    Article  Google Scholar 

  53. Soong M, Rubash HE, Macaulay W (2004) Dislocation after total hip arthroplasty. J Am Acad Orthop Surg 12:314–321

    Article  PubMed  Google Scholar 

  54. Stewart T, Tipper J, Streicher R, Ingham E, Fisher J (2001) Long-term wear of HIPed alumina on alumina bearings for THR under microseparation conditions. J Mater Sci Mater Med 12:1053–1056

    Article  CAS  PubMed  Google Scholar 

  55. Tanino H, Harman MK, Banks SA, Hodge WA (2007) Association between dislocation, impingement, and articular geometry in retrieved acetabular polyethylene cups. J Orthop Res 25:1401–1407. doi:10.1002/jor.20410

    Article  CAS  PubMed  Google Scholar 

  56. Tanino H, Ito H, Banks SA, Harman MK, Matsuno T (2010) Use of a deep polyethylene liner for the treatment of recurrent dislocation. Hip Int 20:269–272

    PubMed  Google Scholar 

  57. Tanino H, Ito H, Harman MK, Matsuno T, Hodge WA, Banks SA (2008) An in vivo model for intraoperative assessment of impingement and dislocation in total hip arthroplasty. J Arthroplast 23:714–720. doi:10.1016/j.arth.2007.07.004

    Article  Google Scholar 

  58. Usrey MM, Noble PC, Rudner LJ, Conditt MA, Birman MV, Santore RF, Mathis KB (2006) Does neck/liner impingement increase wear of ultrahigh-molecular-weight polyethylene liners? J Arthroplast 21:S65–S71. doi:10.1016/j.arth.2006.05.013

    Article  Google Scholar 

  59. Veitch SW, Jones SA (2009) (V) Prevention of dislocation in hip arthroplasty. Orthop Trauma 23:35–39. doi:10.1016/j.mporth.2009.01.005

    Article  Google Scholar 

  60. Vendittoli PA, Ganapathi M, Nuño N, Plamondon D, Lavigne M (2007) Factors affecting hip range of motion in surface replacement arthroplasty. Clin Biomech 22:1004–1012. doi:10.1016/j.clinbiomech.2007.07.007

    Article  Google Scholar 

  61. Williams S, Butterfield M, Stewart T, Ingham E, Stone M, Fisher J (2003) Wear and deformation of ceramic-on-polyethylene total hip replacements with joint laxity and swing phase microseparation. Proc Inst Mech Eng Part H-J Eng Med 217:147–153

    Article  CAS  Google Scholar 

  62. Woo RY, Morrey BF (1982) Dislocations after total hip arthroplasty. J Bone Joint Surg Am 64:1295–1306

    Article  CAS  PubMed  Google Scholar 

  63. Wu JSS, Hsu SL, Chen JH (2010) Evaluating the accuracy of wear formulae for acetabular cup liners. Med Biol Eng Comput 48:157–165. doi:10.1007/s11517-009-0535-z

    Article  PubMed  Google Scholar 

  64. Wu JSS, Hsu SL, Chen JH (2010) Wear patterns of, and wear volume formulae for, cylindrically elongated acetabular cup liners. Med Biol Eng Comput 48:691–701. doi:10.1007/s11517-010-0613-2

    Article  PubMed  Google Scholar 

  65. Wu JSS, Hsu SL, Chen JH (2010) Wear patterns of, and wear volume formulae for, hemispherical acetabular cup liners. Wear 268:481–487. doi:10.1016/j.wear.2009.09.007

    Article  CAS  Google Scholar 

  66. Wu JSS, Hung JP, Shu CS, Chen JH (2003) The computer simulation of wear behavior appearing in total hip prosthesis. Comput Methods Programs Biomed 70:81–91

    Article  PubMed  Google Scholar 

  67. Yoshimine F (2005) The influence of the oscillation angle and the neck anteversion of the prosthesis on the cup safe-zone that fulfills the criteria for range of motion in total hip replacements. The required oscillation angle for an acceptable cup safe-zone. J Biomech 38:125–132. doi:10.1016/j.jbiomech.2004.03.012

    Article  PubMed  Google Scholar 

  68. Yoshimine F (2006) The safe-zones for combined cup and neck anteversions that fulfill the essential range of motion and their optimum combination in total hip replacements. J Biomech 39:1315–1323. doi:10.1016/j.jbiomech.2005.03.008

    Article  PubMed  Google Scholar 

  69. Yoshimine F, Ginbayashi K (2002) A mathematical formula to calculate the theoretical range of motion for total hip replacement. J Biomech 35:989–993. doi:10.1016/S0021-9290(02)00040-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract No. MOST 103-2221-E-040-004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Horng Chen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Chien-Chung Lin and Wei-Min Chi made equal contributions to this work (co-first author).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, WM., Lin, CC., Ho, YJ. et al. Using nonlinear finite element models to analyse stress distribution during subluxation and torque required for dislocation of newly developed total hip structure after prosthetic impingement. Med Biol Eng Comput 56, 37–47 (2018). https://doi.org/10.1007/s11517-017-1673-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1673-3

Keywords

Navigation