Skip to main content
Log in

A simple method to reconstruct the molar mass signal of respiratory gas to assess small airways with a double-tracer gas single-breath washout

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

For the assessment of small airway diseases, a noninvasive double-tracer gas single-breath washout (DTG-SBW) with sulfur hexafluoride (SF6) and helium (He) as tracer components has been proposed. It is assumed that small airway diseases may produce typical ventilation inhomogeneities which can be detected within one single tidal breath, when using two tracer components. Characteristic parameters calculated from a relative molar mass (MM) signal of the airflow during the washout expiration phase are analyzed. The DTG-SBW signal is acquired by subtracting a reconstructed MM signal without tracer gas from the signal measured with an ultrasonic sensor during in- and exhalation of the double-tracer gas for one tidal breath. In this paper, a simple method to determine the reconstructed MM signal is presented. Measurements on subjects with and without obstructive lung diseases including the small airways have shown high reliability and reproducibility of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbas C, Singer F, Yammine S, Casaulta C, Latzin P (2013) Treatment response of airway clearance assessed by single-breath washout in children with cystic fibrosis. J Cyst Fibros 12(6):567–574

    Article  PubMed  Google Scholar 

  2. Boeck L, Gensmer A, Nyilas S, Stieltjes B, Re TJ, Tamm M, Latzin P, Stolz D (2016) Single-breath washout tests to assess small airway disease in COPD. Chest 150:1091–1100

    Article  PubMed  Google Scholar 

  3. Burgel PR (2011) The role of small airways in obstructive airway diseases. Eur Respir Rev 20(119):23–33

    Article  PubMed  Google Scholar 

  4. Contoli M, Kraft M, Hamid Q, Bousquet J, Rabe KF, Fabbri LM, Papi A (2012) Do small airway abnormalities characterize asthma phenotypes? In search of proof. Clin Exp Allergy 42(8):1150–1160

    Article  CAS  PubMed  Google Scholar 

  5. Diong B, Rajagiri A, Goldman M, Nazeran H (2009) The augmented RIC model of the human respiratory system. Med Biol Eng Comput 47(4):395–404

    Article  PubMed  Google Scholar 

  6. Granstedt F, Folke M, Ekström M, Hök B, Bäcklund Y (2005) Modelling of an electroacoustic gas sensor. Sens Actuators B Chem 104(2):308–311

    Article  CAS  Google Scholar 

  7. Green K, Buchvald FF, Marthin JK, Hanel B, Gustafsson PM, Nielsen KG (2012) Ventilation inhomogeneity in children with primary ciliary dyskinesia. Thorax 67(1):49–53

    Article  PubMed  Google Scholar 

  8. Gustafsson PM (2007) Peripheral airway involvement in CF and asthma compared by inert gas washout. Pediatr Pulmonol 42(2):168–176

    Article  PubMed  Google Scholar 

  9. Gustafsson PM, Ljungberg HK, Kjellman B (2003) Peripheral airway involvement in asthma assessed by single-breath SF6 and He washout. Eur Respir J 21(6):1033–1039

    Article  CAS  PubMed  Google Scholar 

  10. Gustafsson PM, Robinson PD, Lindblad A, Oberli D (2016) Novel methodology to perform sulfur hexafluoride (SF6)-based multiple-breath wash-in and washout in infants using current commercially available equipment. J Appl Physiol 121:1087–1097

    Article  CAS  PubMed  Google Scholar 

  11. Hamid Q (2012) Pathogenesis of small airways in asthma. Respiration 84(1):4–11

    Article  CAS  PubMed  Google Scholar 

  12. Hansen J (2008) Assessing small airways disease. Eur Respir J 32(5):1410 (author reply 1410–1410; author reply 1411)

    Article  CAS  PubMed  Google Scholar 

  13. Husemann K, Berg N, Engel J, Port J, Joppek C, Tao Z, Singer F, Schulz H, Kohlhäufl M (2014) Double tracer gas single-breath washout: reproducibility in healthy subjects and COPD. Eur Respir J 44(5):1210–1222

    Article  PubMed  Google Scholar 

  14. Husemann K, Haidl P, Kroegel C, Voshaar T, Kohlhäufl M (2012) Lung function diagnostics for the small airways. Pneumologie 66(5):283–289

    Article  CAS  PubMed  Google Scholar 

  15. Kelly VJ, Brown NJ, King GG, Thompson BR (2010) A method to determine in vivo, specific airway compliance, in humans. Med Biol Eng Comput 48(5):489–496

    Article  PubMed  Google Scholar 

  16. Latzin P, Thamrin C, Kraemer R (2008) Ventilation inhomogeneities assessed by the multibreath washout (MBW) technique. Thorax 63(2):98–99

    Article  PubMed  Google Scholar 

  17. Lombardi E, Hall GL, Calogero C (2013) Pulmonary function testing in infants and preschool children. In: Eber E, Midulla F (eds) ERS handbook of paediatric respiratory medicine. European Respiratory Society, Lausanne

    Google Scholar 

  18. Nyilas S, Singer F, Kumar N, Yammine S, Meier-Girard D, Koerner-Rettberg C, Casaulta C, Frey U, Latzin P (2016) Physiological phenotyping of pediatric chronic obstructive airway diseases. J Appl Physiol 121:324–332

    Article  PubMed  Google Scholar 

  19. O’Rourke C, Klyuzhin I, Park JS, Pollack GH (2011) Unexpected water flow through Nafion-tube punctures. Phys Rev E Stat Nonlin Soft Matter Phys 83(5 Pt 2):056,305

    Article  Google Scholar 

  20. Robinson PD, Latzin P, Verbanck S, Hall GL, Horsley A, Gappa M, Thamrin C, Arets HGM, Aurora P, Fuchs SI, King GG, Lum S, Macleod K, Paiva M, Pillow JJ, Ranganathan S, Ratjen F, Singer F, Sonnappa S, Stocks J, Subbarao P, Thompson BR, Gustafsson PM (2013) Consensus statement for inert gas washout measurement using multiple- and single- breath tests. Eur Respir J 41(3):507–522

    Article  CAS  PubMed  Google Scholar 

  21. Rohani M, Pollack GH (2013) Flow through horizontal tubes submerged in water in the absence of a pressure gradient: mechanistic considerations. Langmuir 29(22):6556–6561

    Article  CAS  PubMed  Google Scholar 

  22. Shaw RJ, Djukanovic R, Tashkin DP, Millar AB, du Bois RM, Orr PA (2002) The role of small airways in lung disease. Respir Med 96(2):67–80

    Article  CAS  PubMed  Google Scholar 

  23. Shi Y, Aledia AS, Tatavoosian AV, Vijayalakshmi S, Galant SP, George SC (2012) Relating small airways to asthma control by using impulse oscillometry in children. J Allergy Clin Immunol 129(3):671–678

    Article  PubMed  Google Scholar 

  24. Singer F, Abbas C, Yammine S, Casaulta C, Frey U, Latzin P (2014) Abnormal small airways function in children with mild asthma. Chest 145(3):492–499

    Article  PubMed  Google Scholar 

  25. Singer F, Houltz B, Latzin P, Robinson P, Gustafsson P (2012) A realistic validation study of a new nitrogen multiple-breath washout system. PLoS ONE 7(4):e36,083

    Article  CAS  Google Scholar 

  26. Singer F, Kieninger E, Abbas C, Yammine S, Fuchs O, Proietti E, Regamey N, Casaulta C, Frey U, Latzin P (2013) Practicability of nitrogen multiple-breath practicability of nitrogen multiple-breath washout measurements in a pediatric cystic fibrosis outpatient setting. Pediatr Pulmonol 48(8):739–746

    Article  PubMed  Google Scholar 

  27. Singer F, Stern G, Thamrin C, Abbas C, Casaulta C, Frey U, Latzin P (2013) A new double-tracer gas single-breath washout to assess early cystic fibrosis lung disease. Eur Respir J 41(2):339–345

    Article  CAS  PubMed  Google Scholar 

  28. Singer F, Stern G, Thamrin C, Fuchs O, Riedel T, Gustafsson P, Frey U, Latzin P (2011) Tidal volume single breath washout of two tracer gases—a practical and promising lung function test. PLoS ONE 6(3):e17,588

    Article  CAS  Google Scholar 

  29. Tøien Ø (2013) Automated open flow respirometry in continuous and long-term measurements: design and principles. J Appl Physiol 114(8):1094–1107

    Article  PubMed  Google Scholar 

  30. Tulic MK, Christodoulopoulos P, Hamid Q (2001) Small airway inflammation in asthma. Respir Res 2(6):333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ueda T, Niimi A, Matsumoto H, Takemura M, Hirai T, Yamaguchi M, Matsuoka H, Jinnai M, Muro S, Chin K, Mishima M (2006) Role of small airways in asthma: investigation using high-resolution computed tomography. J Allergy Clin Immunol 118(5):1019–1025

    Article  PubMed  Google Scholar 

  32. Usmani OS, Barnes PJ (2012) Assessing and treating small airways disease in asthma and chronic obstructive pulmonary disease. Ann Med 44(2):146–156

    Article  CAS  PubMed  Google Scholar 

  33. van den Berge M, ten Hacken NHT, Cohen J, Douma WR, Postma DS (2011) Small airway disease in asthma and COPD: clinical implications. Chest 139(2):412–423

    Article  PubMed  Google Scholar 

  34. Van Muylem A, Baran D (2000) Overall and peripheral inhomogeneity of ventilation in patients with stable cystic fibrosis. Pediatr Pulmonol 30(1):3–9

    Article  PubMed  Google Scholar 

  35. Veiga J, Lopes AJ, Jansen JM, Melo PL (2012) Fluctuation analysis of respiratory impedance waveform in asthmatic patients: effect of airway obstruction. Med Biol Eng Comput 50(12):1249–1259

    Article  CAS  PubMed  Google Scholar 

  36. Verbanck S, Paiva M (2015) Dual gas techniques for peripheral airway function: diffusing the issues. Eur Respir J 45(5):1491–1494

    Article  PubMed  Google Scholar 

  37. Yammine S, Latzin P (2013) Single- and multible-breath washout techniques. In: Eber E, Midulla F (eds) ERS handbook of paediatric respiratory medicine. European Respiratory Society, Lausanne

    Google Scholar 

  38. Yammine S, Nyilas S, Casaulta C, Schibli S, Latzin P, Sokollik C (2016) Function and ventilation of large and small airways in children and adolescents with inflammatory bowel disease. Inflamm Bowel Dis 22:1915–1922

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Port.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Port, J., Tao, Z., Junger, A. et al. A simple method to reconstruct the molar mass signal of respiratory gas to assess small airways with a double-tracer gas single-breath washout. Med Biol Eng Comput 55, 1975–1987 (2017). https://doi.org/10.1007/s11517-017-1633-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1633-y

Keywords

Navigation