Skip to main content
Log in

ECG imaging of ventricular tachycardia: evaluation against simultaneous non-contact mapping and CMR-derived grey zone

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

ECG imaging is an emerging technology for the reconstruction of cardiac electric activity from non-invasively measured body surface potential maps. In this case report, we present the first evaluation of transmurally imaged activation times against endocardially reconstructed isochrones for a case of sustained monomorphic ventricular tachycardia (VT). Computer models of the thorax and whole heart were produced from MR images. A recently published approach was applied to facilitate electrode localization in the catheter laboratory, which allows for the acquisition of body surface potential maps while performing non-contact mapping for the reconstruction of local activation times. ECG imaging was then realized using Tikhonov regularization with spatio-temporal smoothing as proposed by Huiskamp and Greensite and further with the spline-based approach by Erem et al. Activation times were computed from transmurally reconstructed transmembrane voltages. The results showed good qualitative agreement between the non-invasively and invasively reconstructed activation times. Also, low amplitudes in the imaged transmembrane voltages were found to correlate with volumes of scar and grey zone in delayed gadolinium enhancement cardiac MR. The study underlines the ability of ECG imaging to produce activation times of ventricular electric activity—and to represent effects of scar tissue in the imaged transmembrane voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abrams DJ, Earley MJ, Sporton SC, Kistler PM, Gatzoulis MA, Mullen MJ, Till JA, Cullen S, Walker F, Lowe MD, Deanfield JE, Schilling RJ (2007) Comparison of noncontact and electroanatomic mapping to identify scar and arrhythmia late after the Fontan procedure. Circulation 115(13):1738–1746

    Article  PubMed  Google Scholar 

  2. Aras K, Good W, Tate J, Burton B, Brooks D, Coll-Font J, Doessel O, Schulze W, Potyagaylo D, Wang L et al (2015) Experimental data and geometric analysis repository-EDGAR. J Electrocardiol 48(6):975–981

    Article  PubMed  PubMed Central  Google Scholar 

  3. Berger T, Fischer G, Pfeifer B, Modre R, Hanser F, Trieb T, Roithinger FX, Stuehlinger M, Pachinger O, Tilg B, Hintringer F (2006) Single-beat noninvasive imaging of cardiac electrophysiology of ventricular pre-excitation. J Am Coll Cardiol 48:2045–2052

    Article  PubMed  Google Scholar 

  4. Burnes JE, Taccardi B, Rudy Y (2000) A noninvasive imaging modality for cardiac arrhythmias. Circulation 102:2152–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burnes JE, Taccardi B, Ershler PR, Rudy Y (2001) Noninvasive electrocardiogram imaging of substrate and intramural ventricular tachycardia in infarcted hearts. J Am Coll Cardiol 38:2071–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burton BM, Tate JD, Erem B, Swenson DJ, Wang DF, Steffen M, Brooks DH, van Dam, PM, Macleod RS (2011) A toolkit for forward/inverse problems in electrocardiography within the scirun problem solving environment. In: Conference on Proceedings of IEEE Engineering in Medicine and Biology Society, pp 267–270

  7. Chen Z, Relan J, Schulze W, Karim R, Sohal M, Shetty A, Ma YL, Ayache N, Sermesant M, Delingette H, Bostock J, Razavi R, Rhode K, Rinaldi A (2013) Simultaneous non-contact mapping fused with CMR derived grey zone to explore the relationship with ventricular tachycardia substrate in ischaemic cardiomyopathy. J Cardiovasc Magn Reson 15:64

    Article  Google Scholar 

  8. Chen Z, Cabrera-Lozoya R, Rerlan J, Sohal M, Shetty A, Karim R, Delingette H, Gill J, Rhode K, Ayache N, Taggart P, Rinaldi CA, Sermesant M, Razavi R (2016) Biophysical modelling predicts ventricular tachycardia inducibility and circuit morphology: a combined clinical validation and computer modelling approach. J Cardiovasc Electrophysiol 27(7):851–860. doi:10.1111/jce.12991

  9. Chinchapatnam P, Rhode KS, Ginks M, Rinaldi CA, Lambiase P, Razavi R, Arridge S, Sermesant M (2008) Model-based imaging of cardiac apparent conductivity and local conduction velocity for diagnosis and planning of therapy. IEEE Trans Med Imaging 27:1631–1642

    Article  PubMed  Google Scholar 

  10. Coll-Font J, Burton BM, Tate JD, Erem B, Swenson DJ, Wang D, Brooks DH, Van Dam P, Macleod RS (2014) New additions to the toolkit for forward/inverse problems in electrocardiography within the SCIRun problem solving environment. Comput Cardiol 41:213–216

  11. Coll-Font J, Potyagayo D, Schulze WH, Doessel O, Brooks DH (2015) Comparison of temporal dimensionality reduction methods for constrained inverse in cardiac electrical imaging. Comput Cardiol 42:237–240

  12. Computational geometry algorithms library (www.cgal.org)

  13. Ecabert O, Peters J, Schramm H, Lorenz C, von Berg J, Walker MJ, Vembar M, Olszewski ME, Subramanyan K, Lavi G, Weese J (2008) Automatic model-based segmentation of the heart in CT images. IEEE Trans Med Imaging 27:1189–1201

    Article  PubMed  Google Scholar 

  14. Erem B, Coll-Font J, Martinez Orellana R, Stovicek P, Brooks DH (2014) Using transmural regularization and dynamic modeling for non-invasive cardiac potential imaging of endocardial pacing with imprecise thoracic geometry. IEEE Trans Med Imaging 33:726–738

    Article  PubMed  PubMed Central  Google Scholar 

  15. Friedman PA (2002) Novel mapping techniques for cardiac electrophysiology. Heart (British Cardiac Society) 87:575–582

    Article  Google Scholar 

  16. Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269

    Article  CAS  PubMed  Google Scholar 

  17. Geselowitz DB, Miller TW (1983) A bidomain model for anisotropic cardiac muscle. Ann Biomed Eng 11:191–206

    Article  CAS  PubMed  Google Scholar 

  18. Ghanem RN, Jia P, Ramanathan C, Ryu K, Markowitz A, Rudy Y (2005) Noninvasive electrocardiographic imaging (ECGI): comparison to intraoperative mapping in patients. Heart Rhythm 2:339–354

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gornick CC, Adler SW, Pederson B, Hauck J, Budd J, Schweitzer J (1999) Validation of a new noncontact catheter system for electroanatomic mapping of left ventricular endocardium. Circulation 1999:829–835

    Article  Google Scholar 

  20. Greensite F, Huiskamp G (1998) An improved method for estimating epicardial potentials from the body surface. IEEE Trans Biomed Eng 45:98–104

    Article  CAS  PubMed  Google Scholar 

  21. Han C, Pogwizd SM, Killingsworth CR, He B (2011) Noninvasive imaging of three-dimensional cardiac activation sequence during pacing and ventricular tachycardia. Heart Rhythm 8:1266–1272

    Article  PubMed  PubMed Central  Google Scholar 

  22. Han C, Pogwizd SM, Killingsworth CR, He B (2012) Noninvasive reconstruction of the three-dimensional ventricular activation sequence during pacing and ventricular tachycardia in the canine heart. Am J Physiol Heart Circ 302:H244–H252

    Article  CAS  Google Scholar 

  23. Hansen PC, O’Leary PC (1993) The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J Sci Comput 14:1487–1503

    Article  Google Scholar 

  24. He B, Li G, Zhang X (2003) Noninvasive imaging of cardiac transmembrane potentials within three-dimensional myocardium by means of a realistic geometry anisotropic heart model. IEEE Trans Biomed Eng 50:1190–1202

    Article  PubMed  Google Scholar 

  25. Hoekema R, Uijen G, van Oosterom A (1999) The number of independent signals in body surface maps. Methods Inf Med 38:119–124

    CAS  PubMed  Google Scholar 

  26. Huiskamp G, Greensite F (1997) A new method for myocardial activation imaging. IEEE Trans Biomed Eng 44:433–446

    Article  CAS  PubMed  Google Scholar 

  27. Intini A, Goldstein RN, Jia P, Ramanathan C, Ryu K, Giannattasio B, Gilkeson R, Stambler BS, Brugada P, Stevenson WG, Rudy Y, Waldo AL (2005) Electrocardiographic imaging (ECGI), a novel diagnostic modality used for mapping of focal left ventricular tachycardia in a young athlete. Heart Rhythm 2:1250–1252

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kadish A, Hauck J, Pederson B, Beatty G, Gornick C (1999) Mapping of atrial activation with a noncontact, multielectrode catheter in dogs. Circulation 99(14):1906–1913

    Article  CAS  PubMed  Google Scholar 

  29. Karim R, Housden R, Balasubramaniam M, Chen Z, Perry D, Uddin A, Al-Beyatti Y, Palkhi E, Acheampong P, Obom S, Hennemuth A, Lu Y, Bai W, Shi W, Gao Y, Peitgen HO, Radau P, Razavi R, Tannenbaum A, Rueckert D, Cates J, Schaeffter T, Peters D, MacLeod R, Rhode K (2013) Evaluation of current algorithms for segmentation of scar tissue from late Gadolinium enhancement cardiovascular magnetic resonance of the left atrium: an open-access grand challenge. J Cardiovasc Magn Reson 15(1):105

    Article  PubMed  PubMed Central  Google Scholar 

  30. Keller DUJ, Weber FM, Seemann G, Dössel O (2010) Ranking the influence of tissue conductivities on forward-calculated ECGs. IEEE Trans Biomed Eng 57:1568–1576

    Article  PubMed  Google Scholar 

  31. Krueger MW (2012) Personalized multi-scale modeling of the atria: heterogeneities, fiber architecture, hemodialysis and ablation therapy. KIT Scientific Publishing, Karlsruhe

    Google Scholar 

  32. Krueger MW, Seemann G, Rhode K, Keller DUJ, Schilling C, Arujuna A, Gill J, O’Neill MD, Razavi R, Dossel O (2013) Personalization of atrial anatomy and electrophysiology as a basis for clinical modeling of radio-frequency ablation of atrial fibrillation. IEEE Trans Med Imaging 32:73–84

    Article  PubMed  Google Scholar 

  33. Lai D, Sun J, Li Y, He B (2013) Usefulness of ventricular endocardial electric reconstruction from body surface potential maps to noninvasively localize ventricular ectopic activity in patients. Phys Med Biol 58:3897–3909

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu C, Eggen MD, Swingen CM, Iaizzo PA, He B (2012) Noninvasive mapping of transmural potentials during activation in swine hearts from body surface electrocardiograms. IEEE Trans Med Imaging 31:1777–1785

    Article  PubMed  Google Scholar 

  35. Loewe A, Schulze WHW, Jiang Y, Wilhelms M, Luik A, Dössel O, Seemann G (2014) ECG-based detection of early myocardial ischemia in a computational model: impact of additional electrodes, optimal placement, and a new feature for ST deviation. BioMed Res Int 530352:1–11

    Google Scholar 

  36. Macfarlane PW, van Oosterom A, Pahlm O, Kligfield P, Janse M, Camm J (2010) Comprehensive electrocardiology. Springer, Berlin

    Book  Google Scholar 

  37. MacLeod RS, Gardner M, Miller RM, Horacek BM (1995) Application of an electrocardiographic inverse solution to localize ischemia during coronary angioplasty. J Cardiovasc Electrophysiol 6:2–18

    Article  CAS  PubMed  Google Scholar 

  38. McDowell KS, Zahid S, Vadakkumpadan F, Blauer J, MacLeod RS, Trayanova NA (2015) Virtual electrophysiological study of atrial fibrillation in fibrotic remodeling. PLoS ONE 10(2):e0117110

    Article  PubMed  PubMed Central  Google Scholar 

  39. Messnarz B, Tilg B, Modre R, Fischer G, Hanser F (2004) A new spatiotemporal regularization approach for reconstruction of cardiac transmembrane potential patterns. IEEE Trans Biomed Eng 51(2):273–281

    Article  PubMed  Google Scholar 

  40. Müller HP, Godde P, Czerski K, Agrawal R, Feilcke G, Reither K, Wolf KJ, Oeff M (1999) Localization of a ventricular tachycardia-focus with multichannel magnetocardiography and three-dimensional current density reconstruction. J Med Eng Technol 23:108–115

    Article  PubMed  Google Scholar 

  41. Nash MP, Pullan AJ (2005) Challenges facing validation of noninvasive electrical imaging of the heart. Ann Noninvasive Electrocardiol 10:73–82

    Article  PubMed  Google Scholar 

  42. Nielsen BF, Lysaker M, Grottum P (2013) Computing ischemic regions in the heart with the bidomain model-first steps towards validation. IEEE Trans Med Imaging 32:1085–1096

    Article  PubMed  Google Scholar 

  43. Pfeifer B, Hanser F, Seger M, Fischer G, Modre-Osprian R, Tilg B (2008) Patient-specific volume conductor modeling for non-invasive imaging of cardiac electrophysiology. Open Med Inf J 2:32–41

    Article  CAS  Google Scholar 

  44. Pop M, Sermesant M, Lepiller D, Truong M, McVeigh E, Crystal E, Dick A, Delingette H, Ayache N, Wright G (2009) Fusion of optical imaging and MRI for the evaluation and adjustment of macroscopic models of cardiac electrophysiology: a feasibility study. Med Image Anal 13:370–380

    Article  PubMed  Google Scholar 

  45. Potyagaylo D, Segel M, Schulze WHW, Dössel O (2013) Noninvasive localization of ectopic foci: a new optimization approach for simultaneous reconstruction of transmembrane voltages and epicardial potentials. FIMH Lect Notes Comput Sci 7945:166–173

    Article  Google Scholar 

  46. Potyagaylo D, Cortes EG, Schulze WHW, Dössel O (2014) Binary optimization for source localization in the inverse problem of ECG. Med Biol Eng Comput 52:717–728

    Article  PubMed  Google Scholar 

  47. Potyagaylo D, Doessel O, Dam PV (2016) Influence of modeling errors on the initial estimate for nonlinear myocardial activation times imaging calculated with fastest route algorithm. IEEE Trans Biomed Eng PP(99), 1–1

  48. Potyagaylo D, Schulze WHW, Dössel O (2012) A new method for choosing the regularization parameter in the transmembrane potential based inverse problem of ECG. Comput Cardiol 39:29–32

  49. Rahimi A, Xu J, Wang L (2013) Lp-norm regularization in volumetric imaging of cardiac current sources. Comput Math Method Med 2013:10. doi:10.1155/2013/276478

  50. Ramanathan C, Ghanem RN, Jia P, Ryu K, Rudy Y (2004) Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat Med 10:422–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Relan J, Chinchapatnam P, Sermesant M, Rhode K, Ginks M, Delingette H, Rinaldi CA, Razavi R, Ayache N (2011) Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia. Interface Focus 1:396–407

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rhode KS, Hill DL, Edwards PJ, Hipwell J, Rueckert D, Sanchez-Ortiz G, Hegde S, Rahunathan V, Razavi R (2003) Registration and tracking to integrate X-ray and MR images in an XMR facility. IEEE Trans Med Imaging 22(11):1369–1378

    Article  PubMed  Google Scholar 

  53. Rhode K, Ma Y, Housden J, Karim R, Rinaldi CA, Cooklin M, Gill J, O’Neill M, Schaeffter T, Relan J, Sermesant M, Delingette H, Ayache N, Krueger MW, Schulze W, Seemann G, Dössel O, Razavi R (2012) Clinical applications of image fusion for electrophysiology procedures. In: Proceedings of ISBI 2012. pp. 1435–1438. Barcelona

  54. Sapp JL, Dawoud F, Clements JC, Horácek BM (2012) Inverse solution mapping of epicardial potentials quantitative comparison with epicardial contact mapping. Circ Arrhythm Electrophysiol 5:1001–1009

    Article  PubMed  Google Scholar 

  55. Schilling RJ, Peters NS, Davies DW (1998) Simultaneous endocardial mapping in the human left ventricle using a noncontact catheter. Circulation 98:887–898

    Article  CAS  PubMed  Google Scholar 

  56. Schulze WHW, Elies Henar F, Potyagaylo D, Loewe A, Stenroos M, Dössel O (2013) Kalman filter with augmented measurement model: an ECG imaging simulation study. FIMH Lect Notes Comput Sci 7945:200–207

    Article  Google Scholar 

  57. Schulze WHW (2015) ECG imaging of ventricular activity in clinical applications. KIT Scientific Publishing, Karlsruhe

    Google Scholar 

  58. SCI Institute: (2015) http://www.scirun.org, SCIRun: a scientific computing problem solving environment. Scientific Computing and Imaging Institute (SCI)

  59. Sermesant M, Chabiniok R, Chinchapatnam P, Mansi T, Billet F, Moireau P, Peyrat JM, Wong K, Relan J, Rhode K, Ginks M, Lambiase P, Delingette H, Sorine M, Rinaldi CA, Chapelle D, Razavi R, Ayache N (2012) Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation. Med Image Anal 16:201–215

    Article  CAS  PubMed  Google Scholar 

  60. Thiagalingam A, Wallace EM, Boyd AC, Eipper VE, Campbell CR, Byth K, Ross DL, Kovoor P (2004) Noncontact mapping of the left ventricle: insights from validation with transmural contact mapping. PACE 27:570–578

    Article  PubMed  Google Scholar 

  61. Tilg B, Fischer G, Modre R, Hanser F, Messnarz B, Schocke M, Kremser C, Berger T, Hintringer F, Roithinger FX (2002) Model-based imaging of cardiac electrical excitation in humans. IEEE Trans Med Imaging 21:1031–1039

    Article  PubMed  Google Scholar 

  62. Wang D, Kirby RM, Macleod RS, Johnson CR (2011) An optimization framework for inversely estimating myocardial transmembrane potentials and localizing ischemia. Proc Annu Int IEEE EMBS 2011:1680–1683

    Google Scholar 

  63. Wang Y, Cuculich PS, Zhang J, Desouza KA, Vijayakumar R, Chen J, Faddis MN, Lindsay BD, Smith TW, Rudy Y (2011) Noninvasive electroanatomic mapping of human ventricular arrhythmias with electrocardiographic imaging. Sci Transl Med 3:84

    Article  Google Scholar 

  64. Wang L, Dawoud F, Yeung SK, Shi P, Wong KCL, Liu H, Lardo AC (2013) Transmural imaging of ventricular action potentials and post-infarction scars in swine hearts. IEEE Trans Med Imaging 32(4):731–747

    Article  PubMed  Google Scholar 

  65. Wang L, Wong K, Zhang H, Liu H, Shi P (2010) Statistical atlases and computational models of the heart. Lecture Notes in Computer Science, vol. 6364, chap. A statistical physiological-model-constrained framework for computational imaging of subject-specific volumetric cardiac electrophysiology using optical imaging and MRI data, pp. 261–269

  66. Wellens H, Brugada P, Stevenson W (1985) Programmed electrical stimulation of the heart in patients with life-threatening ventricular arrhythmias: What is the significance of induced arrhythmias and what is the correct stimulation protocol? Circulation 72:1–7

    Article  CAS  PubMed  Google Scholar 

  67. Wittkampf FH, Wever EF, Derksen R, Wilde AA, Ramanna H, Hauer RN, Robles de Medina EO (1999) Localisa: new technique for real-time 3-dimensional localization of regular intracardiac electrodes. Circulation 99:1312–1317

    Article  CAS  PubMed  Google Scholar 

  68. Xu J, Dehaghani AR, Gao F, Wang L (2014) Noninvasive transmural electrophysiological imaging based on minimization of total-variation functional. IEEE Trans Med Imaging 33(9):1860–1874

    Article  PubMed  Google Scholar 

  69. YingLiang M, Mistry U, Thorpe A, Housden RJ, Chen Z, Schulze WHW, Rinaldi CA, Razavi R, Rhode K (2013) Automatic electrode and CT/MR image co-localisation for electrocardiographic imaging. FIMH Lect Notes Comput Sci 7945:268–275

    Article  Google Scholar 

  70. Yuan S, Blomstrom P, Pehrson S, Olsson SB (1991) Localization of cardiac arrhythmias: conventional noninvasive methods. Int J Cardiac Imaging 7:193–205

    Article  CAS  Google Scholar 

  71. Zhou Z, Han C, Yang T, He B (2015) Noninvasive imaging of 3-dimensional myocardial infarction from the inverse solution of equivalent current density in pathological hearts. IEEE Trans Biomed Eng 62(2):468–476

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Rashed Karim was funded by the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walther H. W. Schulze.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

The research leading to these results was co-funded by the European Commission within the Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 224495 (euHeart project) and by the German Research Foundation under grants DO637/10-1 and DO637/13-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulze, W.H.W., Chen, Z., Relan, J. et al. ECG imaging of ventricular tachycardia: evaluation against simultaneous non-contact mapping and CMR-derived grey zone. Med Biol Eng Comput 55, 979–990 (2017). https://doi.org/10.1007/s11517-016-1566-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1566-x

Keywords

Navigation