Skip to main content

Advertisement

Log in

Geometry reconstruction method for patient-specific finite element models for the assessment of tibia fracture risk in osteogenesis imperfecta

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Lower limb deformation in children with osteogenesis imperfecta (OI) impairs ambulation and may lead to fracture. Corrective surgery is based on empirical assessment criteria. The objective was to develop a reconstruction method of the tibia for OI patients that could be used as input of a comprehensive finite element model to assess fracture risks. Data were obtained from three children with OI and tibia deformities. Four pQCT scans were registered to biplanar radiographs, and a template mesh was deformed to fit the bone outline. Cortical bone thickness was computed. Sensitivity of the model to missing slices of pQCT was assessed by calculating maximal von Mises stress for a vertical hopping load case. Sensitivity of the model to ±5 % of cortical thickness measurements was assessed by calculating loads at fracture. Difference between the mesh contour and bone outline on the radiographs was below 1 mm. Removal of one pQCT slice increased maximal von Mises stress by up to 10 %. Simulated ±5 % variation of cortical bone thickness leads to variations of up to 4.1 % on predicted fracture loads. Using clinically available tibia imaging from children with OI, the developed reconstruction method allowed the building of patient-specific finite element models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Albert C, Jameson J, Smith P, Harris G (2014) Reduced diaphyseal strength associated with high intracortical vascular porosity within long bones of children with osteogenesis imperfecta. Bone 66:121–130. doi:10.1016/j.bone.2014.05.022

    Article  PubMed  PubMed Central  Google Scholar 

  2. Albert C, Jameson J, Toth JM, Smith P, Harris G (2013) Bone properties by nanoindentation in mild and severe osteogenesis imperfecta. Clin Biomech 28:110–116. doi:10.1016/j.clinbiomech.2012.10.003

    Article  Google Scholar 

  3. Anliker E, Rawer R, Boutellier U, Toigo M (2011) Maximum ground reaction force in relation to tibial bone mass in children and adults. Med Sci Sports Exerc 43:2102–2109. doi:10.1249/MSS.0b013e31821c4661

    Article  PubMed  Google Scholar 

  4. Antoniazzi F, Mottes M, Fraschini P, Brunelli PC, Tato L (2000) Osteogenesis imperfecta: practical treatment guidelines. Paediatr Drugs 2:465–488. doi:10.2165/00128072-200002060-00005

    Article  CAS  PubMed  Google Scholar 

  5. Arnoux PJ, Cesari D, Behr M, Thollon L, Brunet C (2005) Pedestrian lower limb injury criteria evaluation: a finite element approach. Traffic Inj Prev 6:288–297. doi:10.1080/15389580590969463

    Article  CAS  PubMed  Google Scholar 

  6. Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM (2004) Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech 37:27–35. doi:10.1016/s0021-9290(03)00257-4

    Article  PubMed  Google Scholar 

  7. Bryan R, Mohan PS, Hopkins A, Galloway F, Taylor M, Nair PB (2010) Statistical modelling of the whole human femur incorporating geometric and material properties. Med Eng Phys 32:57–65. doi:10.1016/j.medengphy.2009.10.008

    Article  PubMed  Google Scholar 

  8. Caouette C, Bureau MN, Vendittoli PA, Lavigne M, Nuño N (2012) Anisotropic bone remodeling of a biomimetic metal-on-metal hip resurfacing implant. Med Eng Phys 34:559–565. doi:10.1016/j.medengphy.2011.08.015

    Article  CAS  PubMed  Google Scholar 

  9. Caouette C, Rauch F, Villemure I, Arnoux PJ, Gdalevitch M, Veilleux LN, Heng JL, Aubin CE (2014) Biomechanical analysis of fracture risk associated with tibia deformity in children with osteogenesis imperfecta: a finite element analysis. J Musculoskelet Neuronal Interact 14:205–212. doi:10.3410/f.718465268.793509190

    CAS  PubMed  Google Scholar 

  10. Chaibi Y, Cresson T, Aubert B, Hausselle J, Neyret P, Hauger O, de Guise JA, Skalli W (2011) Fast 3D reconstruction of the lower limb using a parametric model and statistical inferences and clinical measurements calculation from biplanar X-rays. Comput Methods Biomech Biomed Eng 15:457–466. doi:10.1080/10255842.2010.540758

    Article  Google Scholar 

  11. Cheriet F, Laporte C, Kadoury S, Labelle H, Dansereau J (2007) A novel system for the 3-D reconstruction of the human spine and rib cage from biplanar X-ray images. IEEE Trans Biomed Eng 54:1356–1358. doi:10.1109/TBME.2006.889205

    Article  CAS  PubMed  Google Scholar 

  12. Delorme S, Petit Y, de Guise JA, Labelle H, Aubin CE, Dansereau J (2003) Assessment of the 3-D reconstruction and high-resolution geometrical modeling of the human skeletal trunk from 2-D radiographic images. IEEE Trans Biomed Eng 50:989–998. doi:10.1109/tbme.2003.814525

    Article  CAS  PubMed  Google Scholar 

  13. Dobbe JGG, du Pré KJ, Kloen P, Blankevoort L, Streekstra GJ (2011) Computer-assisted and patient-specific 3-D planning and evaluation of a single-cut rotational osteotomy for complex long-bone deformities. Med Biol Eng Comput 49:1363–1370. doi:10.1007/s11517-011-0830-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fan Z, Smith PA, Harris GF, Rauch F, Bajorunaite R (2007) Comparison of nanoindentation measurements between osteogenesis imperfecta Type III and Type IV and between different anatomic locations (femur/tibia versus iliac crest). Connect Tissue Res 48:70–75. doi:10.1080/03008200601090949

    Article  PubMed  Google Scholar 

  15. Fan ZF, Smith P, Rauch F, Harris GF (2007) Nanoindentation as a means for distinguishing clinical type of osteogenesis imperfecta. Compos B Eng 38:411–415. doi:10.1016/j.compositesb.2006.08.006

    Article  Google Scholar 

  16. Folkestad L, Hald JD, Hansen S, Gram J, Langdahl B, Abrahamsen B, Brixen K (2012) Bone geometry, density, and microarchitecture in the distal radius and tibia in adults with osteogenesis imperfecta type I assessed by high-resolution pQCT. J Bone Miner Res 27:1405–1412. doi:10.1002/jbmr.1592

    Article  PubMed  Google Scholar 

  17. Fradet L, Petit Y, Wagnac E, Aubin CE, Arnoux PJ (2014) Biomechanics of thoracolumbar junction vertebral fractures from various kinematic conditions. Med Biol Eng Comput 52:87–94. doi:10.1007/s11517-013-1124-8

    Article  PubMed  Google Scholar 

  18. Fritz JM, Guan Y, Wang M, Smith PA, Harris GF (2009) A fracture risk assessment model of the femur in children with osteogenesis imperfecta (OI) during gait. Med Eng Phys 31:1043–1048. doi:10.1016/j.medengphy.2009.06.010

    Article  PubMed  Google Scholar 

  19. Garo A, Arnoux PJ, Wagnac E, Aubin CE (2011) Calibration of the mechanical properties in a finite element model of a lumbar vertebra under dynamic compression up to failure. Med Biol Eng Comput 49:1371–1379. doi:10.1007/s11517-011-0826-z

    Article  PubMed  Google Scholar 

  20. Glorieux FH (2008) Osteogenesis imperfecta. Best Pract Res Clin Rheumatol 22:85–100. doi:10.1016/j.berh.2007.12.012

    Article  CAS  PubMed  Google Scholar 

  21. Grassi L, Hraiech N, Schileo E, Ansaloni M, Rochette M, Viceconti M (2011) Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur. Med Eng Phys 33:112–120. doi:10.1016/j.medengphy.2010.09.014

    Article  PubMed  Google Scholar 

  22. Hafner BJ, Zachariah SG, Sanders JE (2000) Characterisation of three-dimensional anatomic shapes using principal components: application to the proximal tibia. Med Biol Eng Comput 38:9–16. doi:10.1007/BF02344682

    Article  CAS  PubMed  Google Scholar 

  23. Hraiech N, Boichon C, Rochette M, Marchal T, Horner M (2010) Statistical shape modeling of femurs using morphing and principal component analysis. J Med Dev 4:027531–027534

    Google Scholar 

  24. Imbert L, Aurégan J-C, Pernelle K, Hoc T (2015) Microstructure and compressive mechanical properties of cortical bone in children with osteogenesis imperfecta treated with bisphosphonates compared with healthy children. J Mech Behav Biomed Mater 46:261–270. doi:10.1016/j.jmbbm.2014.12.020

    Article  CAS  PubMed  Google Scholar 

  25. Land C, Rauch F, Glorieux FH (2006) Cyclical intravenous pamidronate treatment affects metaphyseal modeling in growing patients with osteogenesis imperfecta. J Bone Miner Res 21:374–379. doi:10.1359/jbmr.051207

    Article  CAS  PubMed  Google Scholar 

  26. Laporte S, Skalli W, de Guise JA, Lavaste F, Mitton D (2003) A biplanar reconstruction method based on 2D and 3D contours: application to the distal femur. Comput Methods Biomech Biomed Eng 6:1–6. doi:10.1080/1025584031000065956

    Article  CAS  Google Scholar 

  27. Mo F, Arnoux PJ, Jure JJ, Masson C (2012) Injury tolerance of tibia for the car–pedestrian impact. Accid Anal Prev 46:18–25. doi:10.1016/j.aap.2011.12.003

    Article  PubMed  Google Scholar 

  28. Poelert S, Valstar E, Weinans H, Zadpoor AA (2013) Patient-specific finite element modeling of bones. Proc Inst Mech Eng H 227:464–478. doi:10.1177/0954411912467884

    Article  PubMed  Google Scholar 

  29. Quijano S, Serrurier A, Aubert B, Laporte S, Thoreux P, Skalli W (2013) Three-dimensional reconstruction of the lower limb from biplanar calibrated radiographs. Med Eng Phys 35:1703–1712. doi:10.1016/j.medengphy.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  30. Rauch F, Glorieux FH (2004) Osteogenesis imperfecta. Lancet 363:1377–1385. doi:10.1016/s0140-6736(04)16051-0

    Article  CAS  PubMed  Google Scholar 

  31. Rauch F, Glorieux FH (2006) Treatment of children with osteogenesis imperfecta. Curr Osteoporos Rep 4:159–164

    Article  PubMed  Google Scholar 

  32. Rauch F, Land C, Cornibert S, Schoenau E, Glorieux FH (2005) High and low density in the same bone: a study on children and adolescents with mild osteogenesis imperfecta. Bone 37:634–641. doi:10.1016/j.bone.2005.06.007

    Article  PubMed  Google Scholar 

  33. Rauch F, Travers R, Plotkin H, Glorieux FH (2002) The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J Clin Investig 110:1293–1299. doi:10.1172/JCI15952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schileo E, Taddei F, Cristofolini L, Viceconti M (2008) Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J Biomech 41:356–367. doi:10.1016/j.jbiomech.2007.09.009

    Article  PubMed  Google Scholar 

  35. Schumann S, Tannast M, Nolte L-P, Zheng G (2010) Validation of statistical shape model based reconstruction of the proximal femur—a morphology study. Med Eng Phys 32:638–644. doi:10.1016/j.medengphy.2010.03.010

    Article  PubMed  Google Scholar 

  36. Shaker J, Albert C, Fritz J, Harris G (2015) Recent developments in osteogenesis imperfecta. F1000Research 4:681. doi:10.12688/f1000research.6398.1

    PubMed  PubMed Central  Google Scholar 

  37. Stytz MR, Parrott RW (1993) Using kriging for 3D medical imaging. Comput Med Imaging Graph 17:421–442. doi:10.1016/0895-6111(93)90059-v

    Article  CAS  PubMed  Google Scholar 

  38. Turner CH (2006) Bone strength: current concepts. Ann N Y Acad Sci 1068:429–446. doi:10.1196/annals.1346.039

    Article  PubMed  Google Scholar 

  39. Vardakastani V, Saletti D, Skalli W, Marry P, Allain JM, Adam C (2014) Increased intra-cortical porosity reduces bone stiffness and strength in pediatric patients with osteogenesis imperfecta. Bone 69:61–67. doi:10.1016/j.bone.2014.09.003

    Article  CAS  PubMed  Google Scholar 

  40. Varghese B, Short D, Penmetsa R, Goswami T, Hangartner T (2011) Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion. J Biomech 44:1374–1379. doi:10.1016/j.jbiomech.2010.12.028

    Article  PubMed  Google Scholar 

  41. Wagnac E, Arnoux PJ, Garo A, Aubin CE (2012) Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. Med Biol Eng Comput 50:903–915. doi:10.1007/s11517-012-0908-6

    Article  PubMed  Google Scholar 

  42. Wang W, Aubin CE, Cahill P, Baran G, Arnoux PJ, Parent S, Labelle H (2015) Biomechanics of high-grade spondylolisthesis with and without reduction. Med Biol Eng Comput. doi:10.1007/s11517-015-1353-0

    Google Scholar 

  43. Zeitlin L, Fassier F, Glorieux FH (2003) Modern approach to children with osteogenesis imperfecta. J Pediatr Orthop B 12:77–87. doi:10.1097/01.bpb.0000049567.52224.fa

    PubMed  Google Scholar 

  44. Zheng G (2010) Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP X-ray radiograph. Med Phys 37:1424–1439. doi:10.1118/1.3327453

    Article  PubMed  Google Scholar 

  45. Zheng G, Schumann S (2008) 3-D reconstruction of a surface model of the proximal femur from digital biplanar radiographs. Conf Proc IEEE Eng Med Biol Soc 2008:66–69. doi:10.1109/iembs.2008.4649092

    PubMed  Google Scholar 

Download references

Funding

Réseau de recherche en santé buccodentaire et osseuse (RSBO), Shriners of North America and Canada Research Chair in Orthopedic Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl-Éric Aubin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caouette, C., Ikin, N., Villemure, I. et al. Geometry reconstruction method for patient-specific finite element models for the assessment of tibia fracture risk in osteogenesis imperfecta. Med Biol Eng Comput 55, 549–560 (2017). https://doi.org/10.1007/s11517-016-1526-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1526-5

Keywords

Navigation