Skip to main content
Log in

Fluid–structure interaction modeling of calcific aortic valve disease using patient-specific three-dimensional calcification scans

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Calcific aortic valve disease (CAVD) is characterized by calcification accumulation and thickening of the aortic valve cusps, leading to stenosis. The importance of fluid flow shear stress in the initiation and regulation of CAVD progression is well known and has been studied recently using fluid–structure interaction (FSI) models. While cusp calcifications are three-dimensional (3D) masses, previously published FSI models have represented them as either stiffened or thickened two-dimensional (2D) cusps. This study investigates the hemodynamic effect of these calcifications employing FSI models using 3D patient-specific calcification masses. A new reverse calcification technique (RCT) is used for modeling different stages of calcification growth based on the spatial distribution of calcification density. The RCT is applied to generate the 3D calcification deposits reconstructed from a patient-specific CT scans. Our results showed that consideration of 3D calcification deposits led to both higher fluid shear stresses and unique fluid shear stress distribution on the aortic side of the cusps that may have an impact on the calcification growth rate. However, the flow did not seem to affect the geometry of the calcification during the growth phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alexopoulos A, Bravou V, Peroukides S, Kaklamanis L, Varakis J, Alexopoulos D, Papadaki H (2010) Bone regulatory factors NFATc1 and Osterix in human calcific aortic valves. Int J Cardiol 139:142–149. doi:10.1016/j.ijcard.2008.10.014

    Article  PubMed  Google Scholar 

  2. Block PC, Palacios IF (1987) Comparison of hemodynamic results of anterograde versus retrograde percutaneous balloon aortic valvuloplasty. Am J Cardiol 60:659–662. doi:10.1016/0002-9149(87)90377-8

    Article  CAS  PubMed  Google Scholar 

  3. Bluestein D, Li YM, Krukenkamp IB (2002) Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J Biomech 35:1533–1540. doi:10.1016/S0021-9290(02)00093-3

    Article  CAS  PubMed  Google Scholar 

  4. Bonow RO (2006) ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. doi:10.1016/j.jacc.2006.05.021

    PubMed Central  Google Scholar 

  5. Butcher JT, Tressel S, Johnson T, Turner D, Sorescu G, Jo H, Nerem RM (2006) Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. Arterioscler Thromb Vasc Biol 26:69–77. doi:10.1161/01.ATV.0000196624.70507.0d

    Article  CAS  PubMed  Google Scholar 

  6. Chandra S, Rajamannan N, Sucosky P (2012) Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Biomech Model Mechanobiol 11:1085–1096. doi:10.1007/s10237-012-0375-x

    Article  PubMed  Google Scholar 

  7. Choi K, Kuhn JL, Ciarelli MJ, Goldstein SA (1990) The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J Biomech 23:1103–1113. doi:10.1016/0021-9290(90)90003-L

    Article  CAS  PubMed  Google Scholar 

  8. De Hart J, Peters GWM, Schreurs PJG, Baaijens FTP (2003) A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. J Biomech 36:103–112. doi:10.1016/S0021-9290(02)00244-0

    Article  PubMed  Google Scholar 

  9. Haj-Ali R, Marom G, Ben Zekry S, Rosenfeld M, Raanani E (2012) A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling. J Biomech 45:2392–2397. doi:10.1016/j.jbiomech.2012.07.017

    Article  PubMed  Google Scholar 

  10. Halevi R, Hamdan A, Marom G, Mega M, Raanani E, Haj-Ali R (2015) Progressive aortic valve calcification: three-dimensional visualization and biomechanical analysis. J Biomech 48:489–497. doi:10.1016/j.jbiomech.2014.12.004

    Article  PubMed  Google Scholar 

  11. Handke M, Heinrichs G, Beyersdorf F, Olschewski M, Bode C, Geibel A (2003) In vivo analysis of aortic valve dynamics by transesophageal 3-dimensional echocardiography with high temporal resolution. J Thorac Cardiovasc Surg 125:1412–1419. doi:10.1016/S0022-5223(02)73604-0

    Article  PubMed  Google Scholar 

  12. Hounsfield GN (1973) Computerized transverse axial scanning (tomography): part 1. Description of system. Br J Radiol 46:1016–1022. doi:10.1259/0007-1285-46-552-1016

    Article  CAS  PubMed  Google Scholar 

  13. Katayama S, Umetani N, Hisada T, Sugiura S (2013) Bicuspid aortic valves undergo excessive strain during opening: a simulation study. J Thorac Cardiovasc Surg 145:1570–1576. doi:10.1016/j.jtcvs.2012.05.032

    Article  PubMed  Google Scholar 

  14. Kim HS (2009) Nonlinear multi-scale anisotropic material and structural models for prosthetic and native aortic heart valves. Georgia Institute of Technology, Atlanta

    Google Scholar 

  15. Li JKJ (2004) Dynamics of the vascular system. World Scientific, Singapore

    Book  Google Scholar 

  16. Lindroos M, Kupari M, Heikkilä J, Tilvis R (1993) Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. J Am Coll Cardiol 21:1220–1225. doi:10.1016/0735-1097(93)90249-z

    Article  CAS  PubMed  Google Scholar 

  17. Maleki H (2010) Structural and fluid structure interaction analysis of stenotic aortic valves: application to percutaneous aortic valve replacement. Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec, Cannada

  18. Marom G (2014) Numerical methods for fluid–structure interaction models of aortic valves. Arch Comput Methods Eng. doi:10.1007/s11831-014-9133-9

    Google Scholar 

  19. Marom G, Haj-Ali R, Raanani E, Schäfers HJ, Rosenfeld M (2012) A fluid–structure interaction model of coaptation in fully compliant aortic valves. Med Biol Eng Comput 50:173–182. doi:10.1007/s11517-011-0849-5

    Article  PubMed  Google Scholar 

  20. Marom G, Peleg M, Halevi R, Rosenfeld M, Raanani E, Hamdan A, Haj-Ali R (2013) Fluid–structure interaction model of aortic valve with porcine-specific collagen fiber alignment in the cusps. ASME J Biomech Eng 135:101001–101006. doi:10.1115/1.4024824

    Article  Google Scholar 

  21. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Guyton RA, O’Gara PT, Ruiz CE, Skubas NJ, Sorajja P et al (2014) 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63:e57–e185. doi:10.1016/j.jacc.2014.02.536

    Article  PubMed  Google Scholar 

  22. Otto CM, Lind BK, Kitzman DW, Gersh BJ, Siscovick DS (1999) Association of aortic-valve sclerosis with cardiovascular mortality and morbidity in the elderly. N Engl J Med 341:142–147. doi:10.1056/NEJM199907153410302

    Article  CAS  PubMed  Google Scholar 

  23. Rajamannan NM, Subramaniam M, Rickard D, Stock SR, Donovan J, Springett M, Orszulak T, Fullerton DA, Tajik AJ, Bonow RO et al (2003) Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 107:2181–2184. doi:10.1161/01.cir.0000070591.21548.69

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rho JY, Hobatho MC, Ashman RB (1995) Relations of mechanical properties to density and CT numbers in human bone. Med Eng Phys 17:347–355. doi:10.1016/1350-4533(95)97314-F

    Article  CAS  PubMed  Google Scholar 

  25. Roberts WC, Ko JM (2004) Weights of individual cusps in operatively-excised stenotic three-cuspid aortic valves. Am J Cardiol 94:681–684. doi:10.1016/j.amjcard.2004.05.045

    Article  PubMed  Google Scholar 

  26. Rosenhek R, Binder T, Porenta G, Lang I, Christ G, Schemper M, Maurer G, Baumgartner H (2000) Predictors of outcome in severe, asymptomatic aortic stenosis. N Engl J Med 343:611–617. doi:10.1056/NEJM200008313430903

    Article  CAS  PubMed  Google Scholar 

  27. Sirois E, Wang Q, Sun W (2011) Fluid simulation of a transcatheter aortic valve deployment into a patient-specific aortic root. Cardiovasc Eng Technol 2:186–195. doi:10.1007/s13239-011-0037-7

    Article  Google Scholar 

  28. Sommer G, Holzapfel GA (2012) 3D constitutive modeling of the biaxial mechanical response of intact and layer-dissected human carotid arteries. J Mech Behav Biomed Mater 5:116–128. doi:10.1016/j.jmbbm.2011.08.013

    Article  PubMed  Google Scholar 

  29. Stein PD, Sabbah HN (1976) Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves. Circ Res 39:58–65. doi:10.1161/01.res.39.1.58

    Article  CAS  PubMed  Google Scholar 

  30. Sucosky P, Balachandran K, Elhammali A, Jo H, Yoganathan AP (2009) Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4—and TGF-β1—dependent pathway. Arterioscler Thromb Vasc Biol 29:254–260. doi:10.1161/atvbaha.108.176347

    Article  CAS  PubMed  Google Scholar 

  31. Thubrikar MJ (1990) The aortic valve. CRC Press Inc., Boca Raton

    Google Scholar 

  32. Van Loon R (2010) Towards computational modelling of aortic stenosis. Int J Numer Methods Biomed Eng 26:405–420. doi:10.1002/cnm.1270

    Article  Google Scholar 

  33. Wang SH, Lee LP, Lee JS (2001) A linear relation between the compressibility and density of blood. J Acoust Soc Am 109:390–396. doi:10.1121/1.1333419

    Article  CAS  PubMed  Google Scholar 

  34. Weinberg E, Mack P, Schoen F, García-Cardeña G, Kaazempur Mofrad M (2010) Hemodynamic environments from opposing sides of human aortic valve leaflets evoke distinct endothelial phenotypes in vitro. Cardiovasc Eng 10:5–11. doi:10.1007/s10558-009-9089-9

    Article  PubMed  PubMed Central  Google Scholar 

  35. Weinberg EJ, Mofrad MRK (2008) A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J Biomech 41:3482–3487. doi:10.1016/j.jbiomech.2008.08.006

    Article  PubMed  Google Scholar 

  36. Weinberg EJ, Schoen FJ, Mofrad MRK (2009) A computational model of aging and calcification in the aortic heart valve. PLoS ONE 4:e5960. doi:10.1371/journal.pone.0005960

    Article  PubMed  PubMed Central  Google Scholar 

  37. Weston MW, LaBorde DV, Yoganathan AP (1999) Estimation of the shear stress on the surface of an aortic valve leaflet. Ann Biomed Eng 27:572–579. doi:10.1114/1.199

    Article  CAS  PubMed  Google Scholar 

  38. Yap CH, Saikrishnan N, Tamilselvan T, Yoganathan AP (2012) Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. Biomech Model Mechanobiol 11:171–182. doi:10.1007/s10237-011-0301-7

    Article  PubMed  Google Scholar 

  39. Yap CH, Saikrishnan N, Yoganathan AP (2012) Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet. Biomech Model Mechanobiol 11:231–244. doi:10.1007/s10237-011-0306-2

    Article  PubMed  Google Scholar 

  40. Yin W, Alemu Y, Affeld K, Jesty J, Bluestein D (2004) Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Ann Biomed Eng 32:1058–1066. doi:10.1114/B:ABME.0000036642.21895.3f

    Article  PubMed  Google Scholar 

  41. Yoganathan A, Chandran KB, Sotiropoulos F (2005) Flow in prosthetic heart valves: state-of-the-art and future directions. Ann Biomed Eng 33:1689–1694. doi:10.1007/s10439-005-8759-z

    Article  PubMed  Google Scholar 

  42. Yoganathan AP (1988) Fluid mechanics of aortic stenosis. Eur Heart J Suppl 9:13–17. doi:10.1093/eurheartj/9.suppl_E.13

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grants from the Nicholas and Elizabeth Slezak Super Center for Cardiac Research and Biomedical Engineering at Tel Aviv University, Seymour Pyper Research Fund at Sheba Medical Center, and National Institutes of Health: NIBIB Quantum Award: Implementation Phase II U01 EB012487-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Haj-Ali.

Ethics declarations

Conflict of interest

All authors state that they have no financial and/or personal relationships with other people or organizations that could inappropriately influence or bias the publication of this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halevi, R., Hamdan, A., Marom, G. et al. Fluid–structure interaction modeling of calcific aortic valve disease using patient-specific three-dimensional calcification scans. Med Biol Eng Comput 54, 1683–1694 (2016). https://doi.org/10.1007/s11517-016-1458-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1458-0

Keywords

Navigation