Skip to main content
Log in

Electrical resistance of human soft tissue sarcomas: an ex vivo study on surgical specimens

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This paper presents a study about electrical resistance, which using fixed electrode geometry could be correlated to the tissue resistivity, of different histological types of human soft tissue sarcomas measured during electroporation. The same voltage pulse sequence was applied to the tumor mass shortly after surgical resection by means of a voltage pulse generator currently used in clinical practice for electrochemotherapy that uses reversible electroporation. The voltage pulses were applied by means of a standard hexagonal electrode composed by seven, 20-mm-long equispaced needles. Irrespective of tumor size, the electrode applies electric pulses to the same volume of tissue. The resistance value was computed from the voltage and current recorded by the pulse generator, and it was correlated with the histological characteristics of the tumor tissue which was assessed by a dedicated pathologist. Some differences in resistance values, which could be correlated to a difference in tissue resistivity, were noticed according to sarcoma histotype. Lipomatous tumors (i.e., those rich in adipose tissue) displayed the highest resistance values (up to 1700 Ω), whereas in the other soft tissue sarcomas, such as those originating from muscle, nerve sheath, or fibrous tissue, the electrical resistance measured was between 40 and 110 Ω. A variability in resistance was found also within the same histotype. Among lipomatous tumors, the presence of myxoid tissue between adipocytes reduced the electrical resistance (e.g., 50–100 Ω). This work represents the first step in order to explore the difference in tissue electrical properties of STS. These results may be used to verify whether tuning electric field intensity according to the specific STS histotype could improve tissue electroporation and ultimately treatment efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agoramurthy P, Campana L, Sundararajan R (2011) Finite element modeling and analysis of human breast tissue for electrochemotherapy. In: 2011 annual report conference on electrical insulation and dielectric phenomena (CEIDP). IEEE, pp 191–194

  2. Andreuccetti D, Fossi R (2000) Dielectric properties of human tissues: definitions, parametric model, computing codes IROE Technical report N.TR/ICEMM/13.00. http://niremf.ifac.cnr.it/tissprop/document/tissprop.pdf

  3. Arena CB, Sano MB, Rossmeisl JH et al (2011) High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. Biomed Eng OnLine 10:102. doi:10.1186/1475-925X-10-102

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arena CB, Sano MB, Rylander MN, Davalos RV (2011) Theoretical considerations of tissue electroporation with high-frequency bipolar pulses. IEEE Trans Biomed Eng 58:1474–1482. doi:10.1109/TBME.2010.2102021

    Article  PubMed  Google Scholar 

  5. Bowman AM, Nesin OM, Pakhomova ON, Pakhomov AG (2010) Analysis of plasma membrane integrity by fluorescent detection of Tl+ uptake. J Membr Biol 236:15–26. doi:10.1007/s00232-010-9269-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Campana L, Mocellin S, Basso M et al (2009) Bleomycin-based electrochemotherapy: clinical outcome from a single institution’s experience with 52 patients. Ann Surg Oncol 16:191–199. doi:10.1245/s10434-008-0204-8

    Article  PubMed  Google Scholar 

  7. Campana L, Valpione S, Falci C et al (2012) The activity and safety of electrochemotherapy in persistent chest wall recurrence from breast cancer after mastectomy: a phase-II study. Breast Cancer Res Treat 134:1169–1178. doi:10.1007/s10549-012-2095-4

    Article  CAS  PubMed  Google Scholar 

  8. Campana L, Bianchi G, Mocellin S et al (2014) Electrochemotherapy treatment of locally advanced and metastatic soft tissue sarcomas: results of a non-comparative phase II study. World J Surg 38(4):813–822. doi:10.1007/s00268-013-2321-1

    Article  PubMed  Google Scholar 

  9. Campana L, Dughiero F, Forzan M et al (2015) Electrical resistance of tumor tissue during electroporation: an ex-vivo study on human lipomatous tumors. In: Lacković I, Vasic D (eds) 6th European conference of the international federation for medical and biological engineering. Springer International Publishing, Berlin, pp 569–572

    Google Scholar 

  10. Casciola M, Bonhenry D, Liberti M et al (2014) A molecular dynamic study of cholesterol rich lipid membranes: comparison of electroporation protocols. Bioelectrochemistry Amst Neth 100:11–17. doi:10.1016/j.bioelechem.2014.03.009

    Article  CAS  Google Scholar 

  11. Corovic S, Zupanic A, Miklavcic D (2008) Numerical modeling and optimization of electric field distribution in subcutaneous tumor treated with electrochemotherapy using needle electrodes. IEEE Trans Plasma Sci 36:1665–1672

    Article  Google Scholar 

  12. Corovic S, Lackovic I, Sustaric P et al (2013) Modeling of electric field distribution in tissues during electroporation. Biomed Eng OnLine 12:16

    Article  PubMed  PubMed Central  Google Scholar 

  13. Čorović S, Pavlin M, Miklavčič D (2007) Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations. Biomed Eng OnLine 6:37. doi:10.1186/1475-925X-6-37

    Article  PubMed  PubMed Central  Google Scholar 

  14. Čorović S, Županič A, Kranjc S et al (2010) The influence of skeletal muscle anisotropy on electroporation: in vivo study and numerical modeling. Med Biol Eng Comput 48:637–648. doi:10.1007/s11517-010-0614-1

    Article  PubMed  PubMed Central  Google Scholar 

  15. Davalos RV, Rubinsky B, Otten DM (2002) A feasibility study for electrical impedance tomography as a means to monitor tissue electroporation for molecular medicine. IEEE Trans Biomed Eng 49:400–403. doi:10.1109/10.991168

    Article  PubMed  Google Scholar 

  16. Dimbylow PJ (2000) Current densities in a 2 mm resolution anatomically realistic model of the body induced by low frequency electric fields. Phys Med Biol 45:1013–1022

    Article  CAS  PubMed  Google Scholar 

  17. Dughiero F, Forzan M, Sieni E (2010) Simple 3D FEM models for evaluation of EM exposure produced by welding equipments. In: Studies in applied electromagnetics and mechanics, vol 33. Ios Pr Inc, pp 911–919

  18. Edd JF, Davalos RV (2007) Mathematical modeling of irreversible electroporation for treatment planning. Technol Cancer Res Treat 6:275–286

    Article  PubMed  Google Scholar 

  19. Edd JF, Horowitz L, Davalos RV et al (2006) In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans Biomed Eng 53:1409–1415. doi:10.1109/TBME.2006.873745

    Article  PubMed  Google Scholar 

  20. Forzan M, Sieni E, Dughiero F (2010) A numerical evaluation of electromagnetic fields exposure on real human body models until 100 kHz. COMPEL Int J Comput Maths Electr Electron Eng 29:1552–1561

    Article  Google Scholar 

  21. Gabriel S, Laul RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269

    Article  CAS  PubMed  Google Scholar 

  22. Gabriel S, Laul RW, Gabriel C (1996) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293

    Article  CAS  PubMed  Google Scholar 

  23. Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41:2231–2249. doi:10.1088/0031-9155/41/11/001

    Article  CAS  PubMed  Google Scholar 

  24. Garcia PA, Rossmeisl JH, Robertson J et al (2009) Pilot study of irreversible electroporation for intracranial surgery. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2009:6513–6516. doi:10.1109/IEMBS.2009.5333141

    Google Scholar 

  25. Garcia PA, Rossmeisl JH, Neal RE et al (2010) Intracranial nonthermal irreversible electroporation: in vivo analysis. J Membr Biol 236:127–136. doi:10.1007/s00232-010-9284-z

    Article  CAS  PubMed  Google Scholar 

  26. García-Sánchez T, Sanchez B, Gomez-Foix A, Bragós R (2015) Electrical impedance measurements on electropermeabilized cells attached to microelectrodes. In: Lacković I, Vasic D (eds) 6th European conference of the international federation for medical and biological engineering. Springer International Publishing, Berlin, pp 553–556

    Google Scholar 

  27. Gjonaj E, Bartsch M, Clemens M et al (2002) High-resolution human anatomy models for advanced electromagnetic field computations. IEEE Trans Magn 38:357–360

    Article  Google Scholar 

  28. Hasgall PA, Di Gennaro F, Neufeld E, et al (2015) IT’IS Database for thermal and electromagnetic parameters of biological tissues. www.itis.ethz.ch/database

  29. Ibey BL, Mixon DG, Payne JA et al (2010) Plasma membrane permeabilization by trains of ultrashort electric pulses. Bioelectrochemistry 79:114–121. doi:10.1016/j.bioelechem.2010.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. IFAC-CNR www.ifac.cnr.it

  31. IGEA http://www.igeamedical.com/. Accessed 15 April 2014

  32. Ivorra Antoni, Al-Sakere Bassim, Rubinsky Boris, Mir Lluis M (2009) In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome. Phys Med Biol 54:5949

    Article  PubMed  Google Scholar 

  33. Ivorra A, Villemejane J, Mir LM (2010) Electrical modeling of the influence of medium conductivity on electroporation. Phys Chem Chem Phys PCCP 12:10055–10064. doi:10.1039/c004419a

    Article  CAS  PubMed  Google Scholar 

  34. Ivorra A, Mir LM, Rubinsky B (2010) Electric field redistribution due to conductivity changes during tissue electroporation: experiments with a simple vegetal model. In: Dössel O, Schlegel W (eds) World congress on medical physics and biomedical engineering.

    Google Scholar 

  35. Jaroszeski MJ, Heller R, Gilbert R (2000) Electrochemotherapy, electrogenetherapy, and transdermal drug delivery: electrically mediated delivery of molecules to cells. Humana Press, Totowa

    Book  Google Scholar 

  36. Kos B, Zupanic A, Kotnik T et al (2010) Robustness of treatment planning for electrochemotherapy of deep-seated tumors. J Membr Biol 236:147–153. doi:10.1007/s00232-010-9274-1

    Article  CAS  PubMed  Google Scholar 

  37. Kranjc M, Markelc B, Bajd F et al (2014) In situ monitoring of electric field distribution in mouse tumor during electroporation. Radiology doi:10.1148/radiol.14140311

    PubMed  Google Scholar 

  38. Krassowska W, Filev PD (2007) Modeling electroporation in a single cell. Biophys J 92:404–417. doi:10.1529/biophysj.106.094235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Laufer Shlomi, Ivorra Antoni, Reuter Victor E, Rubinsky Boris, Solomon Stephen B (2010) Electrical impedance characterization of normal and cancerous human hepatic tissue. Physiol Meas 31:995

    Article  PubMed  Google Scholar 

  40. Laufer Shlomi, Solomon Stephen B, Rubinsky Boris (2012) Tissue characterization using electrical impedance spectroscopy data: a linear algebra approach. Physiol Meas 33:997

    Article  PubMed  Google Scholar 

  41. Mahnič-Kalamiza S, Kotnik T, Miklavčič D (2012) Educational application for visualization and analysis of electric field strength in multiple electrode electroporation. BMC Med Educ 12:102. doi:10.1186/1472-6920-12-102

    Article  PubMed  PubMed Central  Google Scholar 

  42. Marty M, Sersa G, Garbay JR et al (2006) Electrochemotherapy—an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Eur J Cancer Suppl 4:3–13. doi:10.1016/j.ejcsup.2006.08.002

    Article  CAS  Google Scholar 

  43. Miklavcic D, Corovic S, Pucihar G, Pavselj N (2006) Importance of tumour coverage by sufficiently high local electric field for effective electrochemotherapy. EJC Suppl 4:45–51

    Article  Google Scholar 

  44. Miklavcic D, Snoj M, Zupanic A et al (2010) Towards treatment planning and treatment of deep-seated solid tumors by electrochemotherapy. Biomed Eng OnLine 9:10. doi:10.1186/1475-925X-9-10

    Article  PubMed  PubMed Central  Google Scholar 

  45. Miklavčič D, Pucihar G, Pavlovec M et al (2005) The effect of high frequency electric pulses on muscle contractions and antitumor efficiency in vivo for a potential use in clinical electrochemotherapy. Bioelectrochemistry 65:121–128. doi:10.1016/j.bioelechem.2004.07.004

    Article  PubMed  Google Scholar 

  46. Miklavčič D, Pavšelj N, Hart FX (2006) Electric properties of tissues. Wiley Encycl. Biomed. Eng., New York

    Google Scholar 

  47. Miklavčič D, Serša G, Brecelj E et al (2012) Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors. Med Biol Eng Comput 50:1213–1225. doi:10.1007/s11517-012-0991-8

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mir LM (2001) Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry 53:1–10. doi:10.1016/S0302-4598(00)00112-4

    Article  CAS  PubMed  Google Scholar 

  49. Mir LM, Orlowski S (1999) Mechanisms of electrochemotherapy. Enhanc Drug Deliv Using High-Volt Pulses 35:107–118. doi:10.1016/S0169-409X(98)00066-0

    CAS  Google Scholar 

  50. Mir LM, Gehl J, Sersa G et al (2006) Standard operating procedures of the electrochemotherapy: instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the Cliniporator™ by means of invasive or non-invasive electrodes. EJC Suppl 4:14–25

    Article  CAS  Google Scholar 

  51. Neal RE, Rossmeisl JH, Garcia PA et al (2011) Successful treatment of a large soft tissue sarcoma with irreversible electroporation. J Clin Oncol 29:e372–e377. doi:10.1200/JCO.2010.33.0902

    Article  PubMed  Google Scholar 

  52. Neal RE, Garcia PA, Robertson JL, Davalos RV (2012) Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning. IEEE Trans Biomed Eng 59:1076–1085. doi:10.1109/TBME.2012.2182994

    Article  PubMed  Google Scholar 

  53. Neal RE, Millar JL, Kavnoudias H et al (2014) In vivo characterization and numerical simulation of prostate properties for non-thermal irreversible electroporation ablation: characterized and simulated prostate IRE. The Prostate 74:458–468. doi:10.1002/pros.22760

    Article  PubMed  Google Scholar 

  54. Onik G, Mikus P, Rubinsky B (2007) Irreversible electroporation: implications for prostate ablation. Technol Cancer Res Treat 6:295–300. doi:10.1177/153303460700600405

    Article  PubMed  Google Scholar 

  55. Pakhomov A (2010) Advanced electroporation techniques in biology and medicine. CRC Press, Boca Raton

    Google Scholar 

  56. Pavlin M, Pavselj N, Miklavcic D (2002) Dependence of induced transmembrane potential on cell density, arrangement, and cell position inside a cell system. IEEE Trans Biomed Eng 49:605–612. doi:10.1109/TBME.2002.1001975

    Article  PubMed  Google Scholar 

  57. Pavlin M, Kandušer M, Reberšek M et al (2005) Effect of cell electroporation on the conductivity of a cell suspension. Biophys J 88:4378–4390. doi:10.1529/biophysj.104.048975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pavselj N, Miklavcic D (2008) Numerical models of skin electropermeabilization taking into account conductivity changes and the presence of local transport regions. IEEE Trans Plasma Sci 36:1650–1658

    Article  Google Scholar 

  59. Pavšelj N, Miklavčič D (2008) Numerical modeling in electroporation-based biomedical applications. Radiol Oncol 42:159–168. doi:10.2478/v10019-008-0008-2

    Google Scholar 

  60. Pavšelj N, Préat V, Miklavčič D (2007) A numerical model of skin electropermeabilization based on in vivo experiments. Ann Biomed Eng 35:2138–2144. doi:10.1007/s10439-007-9378-7

    Article  PubMed  Google Scholar 

  61. Pliquett U (2015) Electrical characterization in time domain—sample rate and ADC precision. In: Lacković I, Vasic D (eds) 6th European conference of the international federation for medical and biological engineering. Springer International Publishing, Berlin, pp 854–857

    Google Scholar 

  62. Pliquett U, Langer R, Weaver JC (1995) Changes in the passive electrical properties of human stratum corneum due to electroporation. Biochim Biophys Acta BBA Biomembr 1239:111–121. doi:10.1016/0005-2736(95)00139-T

    Article  CAS  Google Scholar 

  63. Pucihar G, Mir LM, Miklavcic D (2002) The effect of pulse repetition frequency on the uptake into electropermeabilized cells in vitro with possible applications in electrochemotherapy. Bioelectrochemistry Amst Neth 57:167–172

    Article  CAS  Google Scholar 

  64. Rossmeisl JH, Garcia PA, Roberston JL et al (2013) Pathology of non-thermal irreversible electroporation (N-TIRE)-induced ablation of the canine brain. J Vet Sci 14:433. doi:10.4142/jvs.2013.14.4.433

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rubinsky B (2010) Irreversible electroporation. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  66. Santini MT, Rainaldi G, Romano R et al (2004) MG-63 human osteosarcoma cells grown in monolayer and as three-dimensional tumor spheroids present a different metabolic profile: a 1H NMR study. FEBS Lett 557:148–154. doi:10.1016/S0014-5793(03)01466-2

    Article  CAS  PubMed  Google Scholar 

  67. Sel D, Cukjati D, Batiuskaite D et al (2005) Sequential finite element model of tissue electropermeabilization. IEEE Trans Biomed Eng 52:816–827. doi:10.1109/TBME.2005.845212

    Article  PubMed  Google Scholar 

  68. Sel D, Lebar AM, Miklavcic D (2007) Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization. IEEE Trans Biomed Eng 54:773–781

    Article  PubMed  Google Scholar 

  69. Sree VG, Udayakumar K, Sundararajan R (2011) Electric field analysis of breast tumor cells. Int J Breast Cancer 2011:1–8. doi:10.4061/2011/235926

    Article  Google Scholar 

  70. Stuchly MA, Dawson T (2000) Interaction of low-frequency electric and magnetic fields with the human body. Proc IEEE 88:643–664

    Article  Google Scholar 

  71. World Health Organization, International Agency for Research on Cancer (2013) WHO classification of tumours of soft tissue and bone, 4th edn. IARC Press, Lyon

    Google Scholar 

Download references

Acknowledgments

Authors are grateful to Prof. D. Miklavicic of University of Ljubljana for the helpful discussion with him. The research was partially made possible thanks to the networking COST TD1104 action (www.electroporation.net).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sieni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campana, L.G., Cesari, M., Dughiero, F. et al. Electrical resistance of human soft tissue sarcomas: an ex vivo study on surgical specimens. Med Biol Eng Comput 54, 773–787 (2016). https://doi.org/10.1007/s11517-015-1368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1368-6

Keywords

Navigation