Skip to main content

Advertisement

Log in

A laser Doppler system for monitoring cerebral microcirculation: implementation and evaluation during neurosurgery

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The aim of this study was to adapt and evaluate laser Doppler perfusion monitoring (LDPM) together with custom-designed brain probes and software for continuous recording of cerebral microcirculation in patients undergoing neurosurgery. The LDPM system was used to record perfusion and backscattered light (TLI). These parameters were displayed together with the extracted heart rate (HR), pulsatility index (PI) and signal trends from adjustable time intervals. Technical evaluation was done on skin during thermal provocation. Clinical measurements were performed on ten patients undergoing brain tumour surgery. Data from 76 tissue sites were captured with a length varying between 10 s to 15 min. Statistical comparisons were done using Mann–Whitney tests. Grey and tumour tissue could be separated from white matter using the TLI signal (p < 0.05). The perfusion was significantly higher in grey and tumour tissue compared to white matter (p < 0.005). LDPM was successfully used as an intraoperative tool for monitoring local blood flow and additional parameters linked to cerebral microcirculation (perfusion, TLI, HR and PI) during tumour resection. The systems stability opens up for studies in the postoperative care of patients with, for example, traumatic brain injury or subarachnoid haemorrhage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arshi B, Mack WJ, Emanuel B (2013) Invasive and noninvasive multimodal bedside monitoring in subarachnoid hemorrhage: a review of techniques and available data. Neurol Res Int 2013:987934. doi:10.1155/2013/987934

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barazangi N, Hemphill JC 3rd (2008) Advanced cerebral monitoring in neurocritical care. Neurol India 56(4):405–414

    Article  PubMed  Google Scholar 

  3. Barone DG, Czosnyka M (2014) Brain monitoring: Do we need a hole? An update on invasive and noninvasive brain monitoring modalities. Sci World J 2014:795762. doi:10.1155/2014/795762

    Article  CAS  Google Scholar 

  4. Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt L (2004) Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surgical neurology 62(1):45–51. doi:10.1016/j.surneu.2003.12.007 (discussion 51)

    Article  PubMed  Google Scholar 

  5. Czosnyka M, Pickard JD (2004) Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry 75(6):813–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dias C, Maia I, Cerejo A, Varsos G, Smielewski P, Paiva JA, Czosnyka M (2013) Pressures, flow, and brain oxygenation during plateau waves of intracranial pressure. Neurocrit Care. doi:10.1007/s12028-013-9918-y

    Google Scholar 

  7. Dreier JP, Major S, Manning A, Woitzik J, Drenckhahn C, Steinbrink J, Tolias C, Oliveira-Ferreira AI, Fabricius M, Hartings JA, Vajkoczy P, Lauritzen M, Dirnagl U, Bohner G, Strong AJ (2009) Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain 132(Pt 7):1866–1881. doi:10.1093/brain/awp102

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ellika SK, Jain R, Patel SC, Scarpace L, Schultz LR, Rock JP, Mikkelsen T (2007) Role of perfusion CT in glioma grading and comparison with conventional MR imaging features. AJNR Am J Neuroradiol 28(10):1981–1987. doi:10.3174/ajnr.A0688

    Article  CAS  PubMed  Google Scholar 

  9. Giller CA, Liu HL, Gurnani P, Victor S, Yasdani U, German DC (2003) Validation of a near-infrared probe for detection of thin intracranial white matter structures. J Neurosurg 98:1299–1306

    Article  PubMed  Google Scholar 

  10. Gosling RG, King DH (1974) Arterial assessment by Doppler-shift ultrasound. Proc R Soc Med 67(6 Pt 1):447–449

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Haberl RL, Villringer A, Dirnagl U (1993) Applicability of laser-Doppler flowmetry for cerebral blood flow monitoring in neurological intensive care. Acta Neurochir Suppl 59:64–68

    CAS  PubMed  Google Scholar 

  12. Haj-Hosseini N, Richter J, Andersson-Engels S, Wårdell K (2010) Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid. Lasers Surg Med 42(1):9–14

    Article  PubMed  Google Scholar 

  13. Hillman EM (2007) Optical brain imaging in vivo: techniques and applications from animal to man. J Biomed Opt 12(5):051402

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hillman J, Sturnegk P, Yonas H, Heron J, Sandborg M, Gunnarsson T, Mellergard P (2005) Bedside monitoring of CBF with xenon-CT and a mobile scanner: a novel method in neurointensive care. Br J Neurosurg 19(5):395–401. doi:10.1080/02688690500389898

    Article  CAS  PubMed  Google Scholar 

  15. Jacobs P, Kowatsch R (1993) Sterrad Sterilization System: a new technology for instrument sterilization. Endosc Surg Allied Technol 1(1):57–58

    CAS  PubMed  Google Scholar 

  16. Jakobsson A, Nilsson GE (1993) Prediction of sampling depth and photon pathlength in laser Doppler flowmetry. Med Biol Eng Comput 31(3):301–307

    Article  CAS  PubMed  Google Scholar 

  17. Johansson JD, Blomstedt P, Haj-Hosseini N, Bergenheim AT, Eriksson O, Wårdell K (2009) Combined diffuse light reflectance and electrical impedance measurements as a navigation aid in deep brain surgery. Stereotact Funct Neurosurg 87(2):105–113

    Article  PubMed  Google Scholar 

  18. Johansson JD, Fredriksson I, Wårdell K, Eriksson O (2009) Simulation of reflected light intensity changes during navigation and radio-frequency lesioning in the brain. J Biomed Opt 14(4):044040

    Article  PubMed  Google Scholar 

  19. Karlsson MG, Casimir-Ahn H, Lönn U, Wårdell K (2003) Analysis and processing of laser Doppler perfusion monitoring signals recorded from the beating heart. Med Biol Eng Comput 41(3):255–262

    Article  CAS  PubMed  Google Scholar 

  20. Keller E, Froehlich J, Muroi C, Sikorski C, Muser M (2011) Neuromonitoring in intensive care: a new brain tissue probe for combined monitoring of intracranial pressure (ICP) cerebral blood flow (CBF) and oxygenation. Acta Neurochir Suppl 110(Pt 2):217–220. doi:10.1007/978-3-7091-0356-2_39

    CAS  PubMed  Google Scholar 

  21. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109. doi:10.1007/s00401-007-0243-4

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nasrallah I, Dubroff J (2013) An overview of PET neuroimaging. Semin Nucl Med 43(6):449–461. doi:10.1053/j.semnuclmed.2013.06.003

    Article  PubMed  Google Scholar 

  23. Nilsson GE, Tenland T, Oberg PA (1980) Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans Bio-med Eng 27(10):597–604. doi:10.1109/TBME.1980.326582

    Article  CAS  Google Scholar 

  24. Nilsson GE, Salerud GE, Strömberg NOT, Wårdell K (2003) Laser Doppler perfusion monitoring and imaging. In: Vo-Dinh T (ed) Biomedical Photonics Handbook, Chap. 15. CRC Press, p 11–24

  25. Parthasarathy AB, Weber EL, Richards LM, Fox DJ, Dunn AK (2010) Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study. J Biomed Opt 15(6):066030. doi:10.1117/1.3526368

    Article  PubMed  Google Scholar 

  26. Raabe A, Van De Ville D, Leutenegger M, Szelenyi A, Hattingen E, Gerlach R, Seifert V, Hauger C, Lopez A, Leitgeb R, Unser M, Martin-Williams EJ, Lasser T (2009) Laser Doppler imaging for intraoperative human brain mapping. NeuroImage 44(4):1284–1289. doi:10.1016/j.neuroimage.2008.10.049

    Article  CAS  PubMed  Google Scholar 

  27. Rejmstad P, Akesson G, Hillman J, Wardell K (2012) A laser Doppler system for monitoring of intracerebral microcirculation. In: Conference Proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference 2012:1988–1991. doi:10.1109/EMBC.2012.6346346

  28. Richter JC, Haj-Hosseini N, Andersson-Engel S, Wardell K (2011) Fluorescence spectroscopy measurements in ultrasonic navigated resection of malignant brain tumors. Lasers Surg Med 43(1):8–14. doi:10.1002/lsm.21022

    Article  PubMed  Google Scholar 

  29. Rostami E, Engquist H, Enblad P (2014) Imaging of cerebral blood flow in patients with severe traumatic brain injury in the neurointensive care. Front Neurol 5:114. doi:10.3389/fneur.2014.00114

    PubMed  PubMed Central  Google Scholar 

  30. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7(5):392–401. doi:10.1016/S1470-2045(06)70665-9

    Article  CAS  PubMed  Google Scholar 

  31. Su XW, Guan Y, Barnes M, Clark JB, Myers JL, Undar A (2011) Improved cerebral oxygen saturation and blood flow pulsatility with pulsatile perfusion during pediatric cardiopulmonary bypass. Pediatr Res 70(2):181–185. doi:10.1038/pr.2011.406

    Article  PubMed  Google Scholar 

  32. Tarumi T, Ayaz Khan M, Liu J, Tseng BM, Parker R, Riley J, Tinajero C, Zhang R (2014) Cerebral hemodynamics in normal aging: central artery stiffness, wave reflection, and pressure pulsatility. J Cereb Blood Flow Metab. doi:10.1038/jcbfm.2014.44

    PubMed  Google Scholar 

  33. Wardell K, Jakobsson A, Nilsson GE (1993) Laser Doppler perfusion imaging by dynamic light scattering. IEEE Trans Bio-med Eng 40(4):309–316. doi:10.1109/10.222322

    Article  CAS  Google Scholar 

  34. Wårdell K, Braverman IM, Silverman DG, Nilsson GE (1994) Spatial heterogeneity in normal skin perfusion recorded with laser Doppler imaging and flowmetry. Microvasc Res 48(1):26–38

    Article  PubMed  Google Scholar 

  35. Wårdell K, Blomstedt P, Richter J, Antonsson J, Eriksson O, Zsigmond P, Bergenheim AT, Hariz MI (2007) Intracerebral microvascular measurements during deep brain stimulation implantation using laser Doppler perfusion monitoring. Stereotact Funct Neurosurg 85(6):279–286

    Article  PubMed  Google Scholar 

  36. Wårdell K, Zsigmond P, Richter J, Hemm S (2013) Relationship between laser Doppler signals and anatomy during deep brain stimulation electrode implantation toward the ventral intermediate nucleus and subthalamic nucleus. Neurosurgery 72(2 Suppl Operative):ons127–ons140. doi:10.1227/NEU.0b013e31827e5821

    PubMed  Google Scholar 

  37. Warmuth C, Gunther M, Zimmer C (2003) Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 228(2):523–532. doi:10.1148/radiol.2282020409

    Article  PubMed  Google Scholar 

  38. Winkler MK, Chassidim Y, Lublinsky S, Revankar GS, Major S, Kang EJ, Oliveira-Ferreira AI, Woitzik J, Sandow N, Scheel M, Friedman A, Dreier JP (2012) Impaired neurovascular coupling to ictal epileptic activity and spreading depolarization in a patient with subarachnoid hemorrhage: possible link to blood-brain barrier dysfunction. Epilepsia 53(Suppl 6):22–30. doi:10.1111/j.1528-1167.2012.03699.x

    Article  PubMed  PubMed Central  Google Scholar 

  39. You J, Du C, Volkow ND, Pan Y (2014) Optical coherence Doppler tomography for quantitative cerebral blood flow imaging. Biomed Opt Exp 5(9):3217–3230. doi:10.1364/BOE.5.003217

    Article  Google Scholar 

  40. Zweifel C, Dias C, Smielewski P, Czosnyka M (2014) Continuous time-domain monitoring of cerebral autoregulation in neurocritical care. Med Eng Phys. doi:10.1016/j.medengphy.2014.03.002

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the clinical staff at the Neurosurgical Department of Linköping University Hospital for their help during the surgical measurements. The authors also acknowledge research engineer Mats Andersson and Per Sveider at the Department of Biomedical Engineering for skilful fabrication of the custom optical probes. This study was supported by the Swedish Research Council (Grant No. 6212-010-4216).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Rejmstad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rejmstad, P., Åkesson, G., Åneman, O. et al. A laser Doppler system for monitoring cerebral microcirculation: implementation and evaluation during neurosurgery. Med Biol Eng Comput 54, 123–131 (2016). https://doi.org/10.1007/s11517-015-1332-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1332-5

Keywords

Navigation