Skip to main content
Log in

Modeling the effect of dendritic input location on MEG and EEG source dipoles

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The cerebral sources of magneto- and electroencephalography (MEG, EEG) signals can be represented by current dipoles. We used computational modeling of realistically shaped passive-membrane dendritic trees of pyramidal cells from the human cerebral cortex to examine how the spatial distribution of the synaptic inputs affects the current dipole. The magnitude of the total dipole moment vector was found to be proportional to the vertical location of the synaptic input. The dipole moment had opposite directions for inputs above and below a reversal point located near the soma. Inclusion of shunting-type inhibition either suppressed or enhanced the current dipole, depending on whether the excitatory and inhibitory synapses were on the same or opposite side of the reversal point. Relating the properties of the macroscopic current dipoles to dendritic current distributions can help to provide means for interpreting MEG and EEG data in terms of synaptic connection patterns within cortical areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agmon-Snir H, Segev I (1993) Signal delay and input synchronization in passive dendritic structures. J Neurophysiol 70(5):2066–2085

    CAS  PubMed  Google Scholar 

  2. Ahlfors SP, Hämäläinen MS (2012) MEG and EEG: Source estimation. In: Brette R, Destexhe A (eds) Handbook of neural activity measurement. Cambridge University Press, Cambridge, pp 257–286

    Chapter  Google Scholar 

  3. Ahlfors SP, Han J, Belliveau JW, Hämäläinen MS (2010) Sensitivity of MEG and EEG to source orientation. Brain Topogr 23(3):227–232. doi:10.1007/s10548-010-0154-x

    Article  PubMed Central  PubMed  Google Scholar 

  4. Ahlfors SP, Han J, Lin FH, Witzel T, Belliveau JW, Hämäläinen MS, Halgren E (2010) Cancellation of EEG and MEG signals generated by extended and distributed sources. Hum Brain Mapp 31(1):140–149. doi:10.1002/hbm.20851

    PubMed Central  PubMed  Google Scholar 

  5. Ahlfors SP, Jones SR, Ahveninen J, Hämäläinen MS, Belliveau JW, Bar M (2015) Direction of magnetoencephalography sources associated with feedback and feedforward contributions in a visual object recognition task. Neurosci Lett 585:149–154. doi:10.1016/j.neulet.2014.11.029

    Article  CAS  PubMed  Google Scholar 

  6. Allison T, Puce A, McCarthy G (2002) Category-sensitive excitatory and inhibitory processes in human extrastriate cortex. J Neurophysiol 88(5):2864–2868

    Article  PubMed  Google Scholar 

  7. Avitan L, Teicher M, Abeles M (2009) EEG generator–a model of potentials in a volume conductor. J Neurophysiol 102(5):3046–3059. doi:10.1152/jn.91143.2008

    Article  PubMed  Google Scholar 

  8. Barbas H, Zikopoulos B (2007) The prefrontal cortex and flexible behavior. Neuroscientist 13(5):532–545. doi:10.1177/1073858407301369

    Article  PubMed Central  PubMed  Google Scholar 

  9. Barth DS, Sutherling W (1988) Current source-density and neuromagnetic analysis of the direct cortical response in rat cortex. Brain Res 450(1–2):280–294

    Article  CAS  PubMed  Google Scholar 

  10. Blagoev KB, Mihaila B, Travis BJ, Alexandrov LB, Bishop AR, Ranken D, Posse S, Gasparovic C, Mayer A, Aine CJ, Ulbert I, Morita M, Muller W, Connor J, Halgren E (2007) Modelling the magnetic signature of neuronal tissue. Neuroimage 37(1):137–148

    Article  CAS  PubMed  Google Scholar 

  11. Branco T, Hausser M (2010) The single dendritic branch as a fundamental functional unit in the nervous system. Curr Opin Neurobiol 20(4):494–502

    Article  CAS  PubMed  Google Scholar 

  12. Carnevale NT, Hines ML (2005) The NEURON Book. Cambridge University Press, Cambridge

    Google Scholar 

  13. Cassara AM, Hagberg GE, Bianciardi M, Migliore M, Maraviglia B (2008) Realistic simulations of neuronal activity: a contribution to the debate on direct detection of neuronal currents by MRI. Neuroimage 39(1):87–106

    Article  CAS  PubMed  Google Scholar 

  14. Cassara AM, Maraviglia B, Hartwig S, Trahms L, Burghoff M (2009) Neuronal current detection with low-field magnetic resonance: simulations and methods. Magn Reson Imaging 27(8):1131–1139

    Article  PubMed  Google Scholar 

  15. Cauller L (1995) Layer I of primary sensory neocortex: where top-down converges upon bottom-up. Behav Brain Res 71(1–2):163–170

    Article  CAS  PubMed  Google Scholar 

  16. Cohen D, Halgren E (2003) Magnetoencephalography (Neuromagnetism). In: Adelman G, Smith BH (eds) Encyclopedia of neuroscience, vol II, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  17. David O, Friston KJ (2003) A neural mass model for MEG/EEG: coupling and neuronal dynamics. Neuroimage 20(3):1743–1755

    Article  PubMed  Google Scholar 

  18. Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K (2008) The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput Biol 4(8):e1000092

    Article  PubMed Central  PubMed  Google Scholar 

  19. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1):1–47

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez Andino SL, Perrig S, de Peralta Grave, Menendez R (2011) Spatiotemporal scales and links between electrical neuroimaging modalities. Med Biol Eng Comput 49(5):511–520. doi:10.1007/s11517-011-0769-4

    Article  PubMed  Google Scholar 

  21. Halgren E, Wang C, Schomer DL, Knake S, Marinkovic K, Wu J, Ulbert I (2006) Processing stages underlying word recognition in the anteroventral temporal lobe. Neuroimage 30(4):1401–1413. doi:10.1016/j.neuroimage.2005.10.053

    Article  PubMed Central  PubMed  Google Scholar 

  22. Hausser M, Roth A (1997) Estimating the time course of the excitatory synaptic conductance in neocortical pyramidal cells using a novel voltage jump method. J Neurosci 17(20):7606–7625

    CAS  PubMed  Google Scholar 

  23. Hayes TL, Lewis DA (1996) Magnopyramidal neurons in the anterior motor speech region. Dendritic features and interhemispheric comparisons. Arch Neurol 53(12):1277–1283

    Article  CAS  PubMed  Google Scholar 

  24. Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9(6):1179–1209

    Article  CAS  PubMed  Google Scholar 

  25. Holmes WR (2010) Passive Cable Modeling. In: De Schutter E (ed) Computational modeling methods for neuroscientists. MIT Press, Cambridge, pp 233–258

    Google Scholar 

  26. Inui K, Kakigi R (2006) Temporal analysis of the flow from V1 to the extrastriate cortex in humans. J Neurophysiol 96(2):775–784

    PubMed  Google Scholar 

  27. Irimia A, Van Horn JD, Halgren E (2012) Source cancellation profiles of electroencephalography and magnetoencephalography. Neuroimage 59(3):2464–2474. doi:10.1016/j.neuroimage.2011.08.104

    Article  PubMed Central  PubMed  Google Scholar 

  28. Jay WI, Wijesinghe RS, Dolasinski BD, Roth BJ (2012) Is it possible to detect dendrite currents using presently available magnetic resonance imaging techniques? Med Biol Eng Comput 50(7):651–657. doi:10.1007/s11517-012-0899-3

    Article  PubMed Central  PubMed  Google Scholar 

  29. Jones SR, Pritchett DL, Sikora MA, Stufflebeam SM, Hämäläinen M, Moore CI (2009) Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and modulation of sensory-evoked responses. J Neurophysiol 102(6):3554–3572. doi:10.1152/jn.00535.2009

    Article  PubMed Central  PubMed  Google Scholar 

  30. Jones SR, Pritchett DL, Stufflebeam SM, Hämäläinen M, Moore CI (2007) Neural correlates of tactile detection: a combined magnetoencephalography and biophysically based computational modeling study. J Neurosci 27(40):10751–10764. doi:10.1523/JNEUROSCI.0482-07.2007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Koch C (1999) Biophysics of computation: information processing in single neurons. Oxford University Press, New York

    Google Scholar 

  32. Koch C, Poggio T, Torre V (1983) Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proc Natl Acad Sci USA 80(9):2799–2802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Korogod SM, Tyc-Dumont S (2009) Electrical dynamics of the dendritic space. Cambridge University Press, Cambridge

    Book  Google Scholar 

  34. Leski S, Linden H, Tetzlaff T, Pettersen KH, Einevoll GT (2013) Frequency dependence of signal power and spatial reach of the local field potential. PLoS Comput Biol 9(7):e1003137. doi:10.1371/journal.pcbi.1003137PCOMPBIOL-D-13-00299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Linden H, Pettersen KH, Einevoll GT (2010) Intrinsic dendritic filtering gives low-pass power spectra of local field potentials. J Comput Neurosci 29(3):423–444. doi:10.1007/s10827-010-0245-4

    Article  PubMed  Google Scholar 

  36. Liston A, Bayford R, Holder D (2012) A cable theory based biophysical model of resistance change in crab peripheral nerve and human cerebral cortex during neuronal depolarisation: implications for electrical impedance tomography of fast neural activity in the brain. Med Biol Eng Comput 50(5):425–437. doi:10.1007/s11517-012-0901-0

    Article  PubMed  Google Scholar 

  37. Llinas RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242(4886):1654–1664

    Article  CAS  PubMed  Google Scholar 

  38. Lopes da Silva F, Van Rotterdam A (1993) Biophysical aspects of EEG and magnetoencephalogram generation. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography: basic principles, clinical applications, and related fields, 3rd edn. Lippincott, Williams and Wilkins, Philadelphia, pp 78–91

    Google Scholar 

  39. Lopes da Silva FH (2010) Electrophysiological basis of MEG signals. In: Hansen P, Kringelbach M, Salmelin R (eds) MEG: an introduction to methods. Oxford University Press, New York, pp 1–23

    Chapter  Google Scholar 

  40. Lorente de No R (1947) Action potential of the motoneurons of the hypoglossus nucleus. J Cell Physiol 29(3):207–287

    Article  CAS  PubMed  Google Scholar 

  41. Lu ZL, Williamson SJ (1991) Spatial extent of coherent sensory-evoked cortical activity. Exp Brain Res 84(2):411–416

    Article  CAS  PubMed  Google Scholar 

  42. Luo Q, Jiang X, Chen B, Zhu Y, Gao JH (2011) Modeling neuronal current MRI signal with human neuron. Magn Reson Med 65(6):1680–1689. doi:10.1002/mrm.22764

    Article  PubMed Central  PubMed  Google Scholar 

  43. Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382(6589):363–366. doi:10.1038/382363a0

    Article  CAS  PubMed  Google Scholar 

  44. Migliore M, Shepherd GM (2002) Emerging rules for the distributions of active dendritic conductances. Nat Rev Neurosci 3(5):362–370

    Article  CAS  PubMed  Google Scholar 

  45. Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65(1):37–100

    CAS  PubMed  Google Scholar 

  46. Murakami S, Hirose A, Okada YC (2003) Contribution of ionic currents to magnetoencephalography (MEG) and electroencephalography (EEG) signals generated by guinea-pig CA3 slices. J Physiol 553:975–985

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Murakami S, Okada Y (2006) Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals. J Physiol 575(Pt 3):925–936. doi:10.1113/jphysiol.2006.105379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Murakami S, Zhang T, Hirose A, Okada YC (2002) Physiological origins of evoked magnetic fields and extracellular field potentials produced by guinea-pig CA3 hippocampal slices. J Physiol 544:237–251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Nunez P (1995) Neocortical dynamics and human EEG rhythms. Oxford University Press, New York

    Google Scholar 

  50. Okada YC, Wu J, Kyuhou S (1997) Genesis of MEG signals in a mammalian CNS structure. Electroencephalogr Clin Neurophysiol 103(4):474–485

    Article  CAS  PubMed  Google Scholar 

  51. Petreanu L, Mao T, Sternson SM, Svoboda K (2009) The subcellular organization of neocortical excitatory connections. Nature 457(7233):1142–1145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Pettersen KH, Einevoll GT (2008) Amplitude variability and extracellular low-pass filtering of neuronal spikes. Biophys J 94(3):784–802. doi:10.1529/biophysj.107.111179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Peyrache A, Dehghani N, Eskandar EN, Madsen JR, Anderson WS, Donoghue JA, Hochberg LR, Halgren E, Cash SS, Destexhe A (2012) Spatiotemporal dynamics of neocortical excitation and inhibition during human sleep. Proc Natl Acad Sci USA 109(5):1731–1736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Rall W, Agmon-Snir H (1998) Cable Theory for Dendritic Neurons. In: Koch C, Segev I (eds) Methods in neuronal modeling, 2nd edn. MIT Press, Cambridge, pp 27–92

    Google Scholar 

  55. Rall W, Rinzel J (1973) Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J 13(7):648–687. doi:10.1016/S0006-3495(73)86014-X

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Reimann MW, Anastassiou CA, Perin R, Hill SL, Markram H, Koch C (2013) A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron 79(2):375–390. doi:10.1016/j.neuron.2013.05.023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179(1):3–20

    Article  CAS  PubMed  Google Scholar 

  58. Roth A, van Rossum MCW (2010) Modeling Synapses. In: De Schutter E (ed) Computational modeling methods for neuroscientists. MIT Press, Cambridge, pp 139–159

    Google Scholar 

  59. Schroeder CE, Foxe JJ (2002) The timing and laminar profile of converging inputs to multisensory areas of the macaque neocortex. Brain Res Cogn Brain Res 14(1):187–198

    Article  PubMed  Google Scholar 

  60. Segev I, Burke RE (1998) Compartmental Models of Complex Neurons. In: Koch C, Segev I (eds) Methods in neuronal modeling, 2nd edn. MIT Press, Cambridge, pp 93–136

    Google Scholar 

  61. Segev I, London M (2000) Untangling dendrites with quantitative models. Science 290(5492):744–750

    Article  CAS  PubMed  Google Scholar 

  62. Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9(3):206–221

    Article  CAS  PubMed  Google Scholar 

  63. Stuart G, Spruston N (1998) Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J Neurosci 18(10):3501–3510

    CAS  PubMed  Google Scholar 

  64. Supek S, Magjarevic R (2011) Neurodynamic measures of functional connectivity and cognition. Med Biol Eng Comput 49(5):507–509. doi:10.1007/s11517-011-0779-2

    Article  PubMed  Google Scholar 

  65. van Oosterom A (2012) The inverse problem of bioelectricity: an evaluation. Med Biol Eng Comput 50(9):891–902. doi:10.1007/s11517-012-0941-5

    Article  PubMed  Google Scholar 

  66. van Ooyen A, Duijnhouwer J, Remme MW, van Pelt J (2002) The effect of dendritic topology on firing patterns in model neurons. Network 13(3):311–325

    Article  PubMed  Google Scholar 

  67. Vaughan HG Jr (1982) The neural origins of human event-related potentials. Ann NY Acad Sci 388:125–138

    Article  PubMed  Google Scholar 

  68. Vuksic M, Petanjek Z, Rasin MR, Kostovic I (2002) Perinatal growth of prefrontal layer III pyramids in Down syndrome. Pediatr Neurol 27(1):36–38

    Article  PubMed  Google Scholar 

  69. Vvedenskii VL, Hari R, Ilmoniemi R, Reinikainen K (1985) Physical basis of the generation of neuromagnetic fields. Biofizika 30(1):154–158

    CAS  PubMed  Google Scholar 

  70. Watson KK, Jones TK, Allman JM (2006) Dendritic architecture of the von Economo neurons. Neuroscience 141(3):1107–1112

    Article  CAS  PubMed  Google Scholar 

  71. Williams SR, Stuart GJ (2003) Role of dendritic synapse location in the control of action potential output. Trends Neurosci 26(3):147–154

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grants NS57500 and NS037462, and by The National Center for Research Resources (P41RR14075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seppo P. Ahlfors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahlfors, S.P., Wreh, C. Modeling the effect of dendritic input location on MEG and EEG source dipoles. Med Biol Eng Comput 53, 879–887 (2015). https://doi.org/10.1007/s11517-015-1296-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1296-5

Keywords

Navigation