Skip to main content
Log in

Improved robust T-wave alternans detectors

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

New statistical and spectral detectors, the modified matched pairs t test, the extended spectral method and the modified spectral method, were proposed for T-wave alternans (TWA) detection gaining robustness according to trend and single-frequency interferences. They were compared to classic detectors such as matched pairs t test, unpaired t test, spectral method, generalized likelihood ratio test and estimated TWA amplitude within a simulation framework and applied to real data. The optimal detection threshold was selected by using a full Monte-Carlo simulation where signals, with and without alternans episodes, were corrupted by Gaussian noise with different power and single-frequency interferences with different tones. All the combinations of noise and frequency were selected and repeated 500 times in order to compute probability of detection (\(P_{\mathrm{d}}\)) and the false alarm probability (\(P_{\mathrm{fa}}\)), providing ROC curves. The study group consisted of 50 patients with implantable cardioverter-defibrillator (age: \(55.3 \pm 16.4\); LVEF: \(42.8 \pm 15.5\)), who were paced (ventricular pacing) at 100 bpm. Two-minute recordings were analyzed. The XYZ orthogonal lead system was used. The best performance was reached by using the modified matched pairs t test (in comparison with the spectral method and other reference methods).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. El-Sherif N, Khan A, Savarese J, Turitto G (2010) Pathophysiology, risk stratification, and management of sudden cardiac death in coronary artery disease. Cardiol J 17(1):4

    PubMed  Google Scholar 

  2. Christiaans I, Van Engelen K, Van Langen IM, Birnie E, Bonsel GJ, Elliott PM et al (2010) Risk stratification for sudden cardiac death in hypertrophic cardiomyopathy: systematic review of clinical risk markers. Europace 12(3):313–321

    Article  PubMed  Google Scholar 

  3. Sastry AP, Narayan SM (2010) Advanced signal processing applications of the ECG: T-wave alternans, heart rate variability, and the signal averaged ECG. In: Goldberger JJ, Ng J (eds) Practical signal and image processing in clinical cardiology. Spinger, London, pp 347–378

    Chapter  Google Scholar 

  4. Toure A, Cabo C (2012) Effect of heterogeneities in the cellular microstructure on propagation of the cardiac action potential. Med Biol Eng Comput 50(8):813–825

    Article  PubMed  Google Scholar 

  5. Selvaraj RJ, Picton P, Nanthakumar K, Mak S, Chauhan VS (2007) Endocardial and epicardial repolarization alternans in human cardiomyopathy: evidence for spatiotemporal heterogeneity and correlation with body surface T-wave alternans. J Am Coll Cardiol 49(3):338–346

    Article  PubMed  Google Scholar 

  6. Pastore JM, Girouard SD, Laurita KR, Akar FG, Rosenbaum DS (1999) Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation 99(10):1385–1394

    Article  CAS  PubMed  Google Scholar 

  7. Qu Z, Xie Y, Garfinkel A, Weiss JN (2010) T-wave alternans and arrhythmogenesis in cardiac diseases. Front Physiol 1(154):1–15

    Google Scholar 

  8. Verrier RL, Klingenheben T, Malik M, El-Sherif N, Exner DV, Hohnloser SH et al (2011) Microvolt T-wave alternans: physiological basis, methods of measurement, and clinical utility-consensus guideline by international society for Holter and noninvasive electrocardiology. J Am Coll Cardiol 58(13):1309–1324

    Article  PubMed Central  PubMed  Google Scholar 

  9. Naseri H, Pourkhajeh H, Homaeinezhad M (2013) A unified procedure for detecting, quantifying, and validating electrocardiogram T-wave alternans. Med Biol Eng Comput 51(9):1031–1042

    Article  CAS  PubMed  Google Scholar 

  10. Arini PD, Baglivo FH, Martinez JP, Laguna P (2014) Evaluation of ventricular repolarization dispersion during acute myocardial ischemia: spatial and temporal ECG indices. Med Biol Eng Comput 52:375–391

    Article  PubMed  Google Scholar 

  11. Amit G, Rosenbaum DS, Super DM, Costantini O (2010) Microvolt T-wave alternans and electrophysiologic testing predict distinct arrhythmia substrates: implications for identifying patients at risk for sudden cardiac death. Heart Rhythm 7(6):763–768

    Article  PubMed  Google Scholar 

  12. Nearing BD, Huang AH, Verrier RL (2002) Modified moving average analysis of T-wave alternans to predict ventricular fibrillation with high accuracy. J Appl Physiol 92:541–549

    Article  PubMed  Google Scholar 

  13. Ghanem RN, Zhou X (2010) Detection of T-Wave alternans phase reversal for arrhythmia prediction and sudden cardiac death risk stratification. Google Patents

  14. Narayan SM, Smith JM, Schechtman KB, Lindsay BD, Cain ME (2005) T-wave alternans phase following ventricular extrasystoles predicts arrhythmia-free survival. Heart Rhythm 2(3):234–241

    Article  PubMed  Google Scholar 

  15. Janusek D, Kania M, Zaczek R, Zavala-Fernandez H, Maniewski R (2014) A simulation of T-wave alternans vectocardiographic representation performed by changing the ventricular heart cells action potential duration. Comput Methods Programs Biomed 114(1):102–108

    Article  CAS  PubMed  Google Scholar 

  16. Takasugi N, Kubota T, Nishigaki K, Verrier RL, Kawasaki M, Takasugi M et al (2011) Should T-wave alternans magnitude be corrected with T-wave amplitude in the ultra-short-term prediction of life-threatening cardiac arrhythmias? Europace 13(10):1512–1513

    Article  Google Scholar 

  17. Janusek D, Fereniec M, Kania M, Kepski R, Maniewski R (2007) Spatial distribution of T-wave alternans. In: Computers in cardiology. IEEE, pp 721–723

  18. Nakai K, Takahashi S, Suzuki A, Hagiwara N, Futagawa K, Shoda M et al (2011) Novel algorithm for identifying T-wave current density alternans using synthesized 187-channel vector-projected body surface mapping. Heart Vessels 26(2):160–167

    Article  PubMed  Google Scholar 

  19. Minkkinen M, Kahonen M, Viik J, Nikus K, Lehtimaki T, Lehtinen R et al (2009) Enhanced predictive power of quantitative TWA during routine exercise testing in the Finnish Cardiovascular Study. J Cardiovasc Electrophysiol 20(4):408–415

    Article  PubMed  Google Scholar 

  20. Dorenkamp M, Breitwieser C, Morguet AJ, Seegers J, Behrens S, Zabel M (2011) T-wave alternans testing in pacemaker patients: comparison of pacing modes and long-term prognostic relevance. Pacing Clin Electrophysiol 34(9):1054–1062

    Article  PubMed  Google Scholar 

  21. Shusterman V, London B (2012) Surge of T-wave alternans in the absence of heart-rate acceleration: A new predictor of sustained ventricular tachyarrhythmias in patients with low ejection fraction? Heart Rhythm 9(11):1920

    Article  Google Scholar 

  22. Li-na R, Xin-hui F, Li-dong R, Jian G, Yong-quan W, Guo-xian Q (2012) Ambulatory ECG-based T-wave alternans and heart rate turbulence can predict cardiac mortality in patients with myocardial infarction with or without diabetes mellitus. Cardiovasc Diabetol 11:104

    Article  PubMed Central  PubMed  Google Scholar 

  23. Sakaki K, Ikeda T, Miwa Y, Miyakoshi M, Abe A, Tsukada T et al (2009) Time-domain T-wave alternans measured from Holter electrocardiograms predicts cardiac mortality in patients with left ventricular dysfunction: a prospective study. Heart Rhythm 6(3):332–337

    Article  PubMed  Google Scholar 

  24. Janusek D, Kania M, Zaczek R, Zavala-Fernandez H, Zbiec A, Opolski G et al (2011) Application of wavelet based denoising for T-wave alternans analysis in high resolution ECG maps. Meas Sci Rev 11(6):181–184

    Article  Google Scholar 

  25. Martinez JP, Olmos S (2002) A robust T wave alternans detector based on the GLRT for Laplacian noise distribution. In: Computers in cardiology. IEEE, pp 677–680

  26. Meste O, Janusek D, Maniewski R (2007) Analysis of the T wave alternans phenomenon with ECG amplitude modulation and baseline wander. In: Computers in cardiology. IEEE, pp 565–568

  27. Nearing BD, Huang AH, Verrier RL (1991) Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave. Science 252(5004):437

    Article  CAS  PubMed  Google Scholar 

  28. Rosenbaum DS, Jackson LE, Smith JM, Garan H, Ruskin JN, Cohen RJ (1994) Electrical alternans and vulnerability to ventricular arrhythmias. N Engl J Med 330(4):235–241

    Article  CAS  PubMed  Google Scholar 

  29. Zareba W, Badilini F, Moss AJ (1995) Automatic detection of non-visible T-wave alternans from three-channel Holter recordings. J Am Coll Cardiol 25(2):409A

    Article  Google Scholar 

  30. Janusek D, Pawlowski Z, Maniewski R (2007) Evaluation of the T-wave alternans detection methods: a simulation study. Anatol J Cardiol 7(Suppl 1):116–119

    Google Scholar 

  31. Srikanth T, Lin D, Kanaan N, Gu H (2002) Presence of T-wave alternans in the statistical context. A new approach to low amplitude alternans measurement. In: Computers in cardiology. IEEE

  32. Martinez JP, Olmos S (2005) Methodological principles of T wave alternans analysis: a unified framework. IEEE Trans Biomed Eng 52(4):599–613

    Article  PubMed  Google Scholar 

  33. Meste O, Janusek D, Kania M (2012) A new robust T wave alternans detector and its threshold optimization. A new robust T wave alternans detector and its threshold optimization. In: Computers in cardiology. IEEE, pp 425–428

  34. Pan J, Tompkins WJ (1985) A real-time QRS detection algorithm. IEEE Trans Biomed Eng 3:230–6

    Article  Google Scholar 

  35. Burattini L, Zareba W, Rashba EJ, Couderc JP, Konecki J, Moss AJ (1998) ECG features of microvolt T-wave alternans in coronary artery disease and long QT syndrome patients. J Electrocardiol 31(Suppl):114–120

    Article  PubMed  Google Scholar 

  36. Meyer C, Keiser H (1977) Electrocardiogram baseline noise estimation and removal using cubic splines and state-space computation techniques. Comput Biomed Res 10(5):459–470

    Article  CAS  PubMed  Google Scholar 

  37. Bazett H (2006) An analysis of the time-relations of electrocradiograms. Ann Noninvasive Electrocardiol 2(2):177–194

    Article  Google Scholar 

  38. DeLong E, DeLong D, Clarke-Pearson D (1988) Comparing the areas under 2 or more correlated receiver operating characteristic curves—a nonparametric approach. Biometrics 44(3):837–845

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the research project DEC-2011/01/B/ST7/06801 of the Polish National Science Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Meste.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meste, O., Janusek, D., Karczmarewicz, S. et al. Improved robust T-wave alternans detectors. Med Biol Eng Comput 53, 361–370 (2015). https://doi.org/10.1007/s11517-015-1243-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1243-5

Keywords

Navigation