Skip to main content
Log in

Multifractal analysis of nonlinear complexity of sacral skin blood flow oscillations in older adults

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the relationship between cutaneous vasodilatory function and nonlinear complexity of blood flow oscillations (BFO) in older people. A non-painful fast local heating protocol was applied to the sacral skin in 20 older subjects with various vasodilatory functions. Laser Doppler flowmetry was used to measure skin blood oscillations. The complexity of the characteristic frequencies (i.e., metabolic (0.0095–0.02 Hz), neurogenic (0.02–0.05 Hz), myogenic (0.05–0.15 Hz), respiratory (0.15–0.4 Hz), and cardiac (0.4–2 Hz)) of BFO was quantified using the multifractal detrended fluctuation analysis. Compared with the 65–75 years group, the complexity of metabolic BFO in the 75–85 years group was significantly lower at the baseline (P < 0.05) and the second peak (P < 0.001). Compared with baseline BFO, subjects in the 65–75 years group had a significant increase in the complexity of metabolic BFO (P < 0.01) in response to local heating; while subjects in the 75–85 years group did not. Our findings support the use of multifractal analysis to assess aging-related microvascular dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bassingthwaighte JB, Raymond GM (1995) Evaluation of the dispersional analysis method for fractal time-series. Ann Biomed Eng 23(4):491–505

    Article  PubMed  CAS  Google Scholar 

  2. Beckers F, Verheyden B, Aubert AE (2006) Aging and nonlinear heart rate control in a healthy population. Am J Physiol Heart Circ Physiol 290(6):H2560–H2570

    Article  PubMed  CAS  Google Scholar 

  3. Brandes RP, Fleming I, Busse R (2005) Endothelial aging. Cardiovasc Res 66(2):286–294

    Article  PubMed  CAS  Google Scholar 

  4. Brooks EM, Morgan AL, Pierzga JM, Wladkowski SL, O’Gorman JT et al (1997) Chronic hormone replacement therapy alters thermoregulatory and vasomotor function in postmenopausal women. J Appl Physiol 83(2):477–484

    PubMed  CAS  Google Scholar 

  5. Carolan-Rees G, Tweddel AC, Naka KK, Griffith TM (2002) Fractal dimensions of laser doppler flowmetry time series. Med Eng Phys 24(1):71–76

    Article  PubMed  CAS  Google Scholar 

  6. Charkoudian N, Stephens DP, Pirkle KC, Kosiba WA, Johnson JM (1999) Influence of female reproductive hormones on local thermal control of skin blood flow. J Appl Physiol 87(5):1719–1723

    PubMed  CAS  Google Scholar 

  7. Esen F, Esen H (2006) Detrended fluctuation analysis of laser Doppler flowmetry time series: the effect of extrinsic and intrinsic factors on the fractal scaling of microvascular blood flow. Physiol Meas 27(11):1241–1253

    Article  PubMed  CAS  Google Scholar 

  8. Esen F, Aydin GS, Esen H (2009) Detrended fluctuation analysis of laser Doppler flowmetry time series. Microvasc Res 78(3):314–318

    Article  PubMed  Google Scholar 

  9. Fisher SV, Szymke TE, Apte SY, Kosiak M (1978) Wheelchair cushion effect on skin temperature. Arch Phys Med Rehabil 59(2):68–72

    PubMed  CAS  Google Scholar 

  10. Goldberger AL, Amaral LA, Hausdorff JM, Ivanov P, Peng CK et al (2002) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA 99(Suppl 1):2466–2472

    Article  PubMed  Google Scholar 

  11. Goldberger AL, Peng CK, Lipsitz LA (2002) What is physiologic complexity and how does it change with aging and disease? Neurobiol Aging 23(1):23–26

    Article  PubMed  Google Scholar 

  12. Heneghan C, McDarby G (2000) Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes. Phys Rev E 62(5):6103–6110

    Article  CAS  Google Scholar 

  13. Holowatz LA, Kenney WL (2007) Up-regulation of arginase activity contributes to attenuated reflex cutaneous vasodilatation in hypertensive humans. J Physiol 581(Pt 2):863–872

    Article  PubMed  Google Scholar 

  14. Humeau A, Chapeau-Blondeau F, Rousseau D, Tartas M, Fromy B et al (2007) Multifractality in the peripheral cardiovascular system from pointwise holder exponents of laser Doppler flowmetry signals. Biophys J 93(12):L59–L61

    Article  PubMed  CAS  Google Scholar 

  15. Humeau A, Chapeau-Blondeau F, Rousseau D, Rousseau P, Trzepizur W et al (2008) Multifractality, sample entropy, and wavelet analyses for age-related changes in the peripheral cardiovascular system: preliminary results. Med Phys 35(2):717–723

    Article  PubMed  Google Scholar 

  16. Ivanov PC, Amaral LA, Goldberger AL, Havlin S, Rosenblum MG et al (1999) Multifractality in human heartbeat dynamics. Nature 399:461–465

    Article  PubMed  CAS  Google Scholar 

  17. Jan YK, Brienza DM (2006) Technology for pressure ulcer prevention. Top Spinal Cord Injury Rehabil 11(4):30–41

    Article  Google Scholar 

  18. Jan YK, Brienza DM, Geyer MJ (2005) Analysis of week-to-week variability in skin blood flow measurements using wavelet transforms. Clin Physiol Funct Imaging 25(5):253–262

    Article  PubMed  Google Scholar 

  19. Jan YK, Brienza DM, Geyer MJ, Karg P (2008) Wavelet-based spectrum analysis of skin blood flow response to alternating pressure. Arch Phys Med Rehabil 89(1):137–145

    Article  PubMed  Google Scholar 

  20. Jan YK, Struck BD, Foreman RD, Robinson C (2009) Wavelet analysis of sacral skin blood flow oscillations to assess soft tissue viability in older adults. Microvasc Res 78(2):162–168

    Article  PubMed  Google Scholar 

  21. Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A et al (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316(1–4):87–114

    Article  Google Scholar 

  22. Landsverk SA, Kvandal P, Bernjak A, Stefanovska A, Kirkeboen KA (2007) The effects of general anesthesia on human skin microcirculation evaluated by wavelet transform. Anesth Analg 105(4):1012–1019

    Article  PubMed  Google Scholar 

  23. Liao F, Garrison DW, Jan YK (2010) Relationship between nonlinear properties of sacral skin blood flow oscillations and vasodilatory function in people at risk for pressure ulcers. Microvasc Res 80(1):44–53

    Article  PubMed  Google Scholar 

  24. Linder-Ganz E, Gefen A (2007) The effects of pressure and shear on capillary closure in the microstructure of skeletal muscles. Ann Biomed Eng 35(12):2095–2107

    Article  PubMed  Google Scholar 

  25. Lipsitz LA, Goldberger AL (1992) Loss of complexity and aging—potential applications of fractals and chaos theory to senescence. JAMA 267(13):1806–1809

    Article  PubMed  CAS  Google Scholar 

  26. Marin J (1995) Age-related changes in vascular responses: a review. Mech Ageing Dev 79(2–3):71–114

    Article  PubMed  CAS  Google Scholar 

  27. Mayrovitz HN, Regan MB (1993) Gender differences in facial skin blood perfusion during basal and heated conditions determined by laser Doppler flowmetry. Microvasc Res 45(2):211–218

    Article  PubMed  CAS  Google Scholar 

  28. Minson CT, Berry LT, Joyner MJ (2001) Nitric oxide and neurally mediated regulation of skin blood flow during local heating. J Appl Physiol 91(4):1619–1626

    PubMed  CAS  Google Scholar 

  29. Minson CT, Holowatz LA, Wong BJ, Kenney WL, Wilkins BW (2002) Decreased nitric oxide- and axon reflex-mediated cutaneous vasodilation with age during local heating. J Appl Physiol 93(5):1644–1649

    PubMed  Google Scholar 

  30. Oberg PA (1990) Laser-Doppler flowmetry. Crit Rev Biomed Eng 18(2):125–163

    PubMed  CAS  Google Scholar 

  31. Ogrin R, Darzins P, Khalil Z (2005) Age-related changes in microvascular blood flow and transcutaneous oxygen tension under basal and stimulated conditions. J Gerontol A 60(2):200–206

    Google Scholar 

  32. Patterson RP, Fisher SV (1980) Pressure and temperature patterns under the ischial tuberosities. Bull Prosthet Res 10–34:5–11

    PubMed  Google Scholar 

  33. Ping PP, Johnson PC (1992) Role of myogenic response in enhancing autoregulation of flow during sympathetic-nerve stimulation. Am J Physiol 263(4):H1177–H1184

    PubMed  CAS  Google Scholar 

  34. Shiogai Y, Stefanovska A, McClintock PV (2010) Nonlinear dynamics of cardiovascular ageing. Phys Rep 488(2–3):51–110

    Article  PubMed  CAS  Google Scholar 

  35. Soderstrom T, Stefanovska A, Veber M, Svensson H (2003) Involvement of sympathetic nerve activity in skin blood flow oscillations in humans. Am J Physiol Heart Circ Physiol 284(5):H1638–H1646

    PubMed  CAS  Google Scholar 

  36. Stefanovska A, Bracic M, Kvernmo HD (1999) Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Trans Biomed Eng 46(10):1230–1239

    Article  PubMed  CAS  Google Scholar 

  37. Stefanovska A, Lotric MB, Strle S, Haken H (2001) The cardiovascular system as coupled oscillators? Physiol Meas 22(3):535–550

    Article  PubMed  CAS  Google Scholar 

  38. Struzik ZR, Hayano J, Soma R, Kwak S, Yamamoto Y (2006) Aging of complex heart rate dynamics. IEEE Trans Biomed Eng 53(1):89–94

    Article  PubMed  Google Scholar 

  39. Willson K, Francis DP, Wensel R, Coats AJS, Parker KH (2002) Relationship between detrended fluctuation analysis and spectral analysis of heart-rate variability. Physiol Meas 23(2):385–401

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Institutes of Health (R21HD065073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yih-Kuen Jan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, F., Struck, B.D., MacRobert, M. et al. Multifractal analysis of nonlinear complexity of sacral skin blood flow oscillations in older adults. Med Biol Eng Comput 49, 925–934 (2011). https://doi.org/10.1007/s11517-011-0775-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0775-6

Keywords

Navigation