Skip to main content
Log in

Fingertip photoplethysmographic waveform variability and systemic vascular resistance in intensive care unit patients

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Low frequency variability in the fingertip photoplethysmogram (PPG) waveform has been utilized for inferring sympathetic vascular control, but its relationship with a quantitative measure of vascular tone has not been established. In this study, we examined the association between fingertip PPG waveform variability (PPGV) and systemic vascular resistance (SVR) obtained from thermodilution cardiac output (CO) and intra-arterial pressure measurements in 48 post cardiac surgery intensive care unit patients. Among the hemodynamic measurements, both CO (P < 0.05) and SVR (P < 0.0001) had statistically significant relationships with the normalized low frequency power (LFnu) of PPGV. The LFnu of baseline PPGV had moderate but significant positive correlation with SVR (r = 0.54, P < 0.0001), and a value below 52.5 nu was able to identify SVR < 900 dyn s cm−5 with sensitivity of 59% and specificity of 95%. The results have provided quantitative evidence to confirm the link between fingertip PPGV and sympathetic vascular control. Suppression of LF vasomotor waves leading to dominance of respiration-related HF fluctuations in the fingertip circulation was a specific (though not sensitive) marker of systemic vasodilatation, which could be potentially utilized for the assessment of critical care patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Achakri H, Stergiopulos N, Hoogerwerf N, Hayoz D, Brunner HR, Meister JJ (1995) Intraluminal pressure modulates the magnitude and the frequency of induced vasomotion in rat arteries. J Vasc Res 32:237–246

    Article  PubMed  CAS  Google Scholar 

  2. Avolio A (2002) The finger volume pulse and assessment of arterial properties. J Hypertens 20:2341–2343

    Article  PubMed  CAS  Google Scholar 

  3. Bendjelid K (2008) The pulse oximetry plethysmographic curve revisited. Curr Opin Crit Care 14:348–353

    Article  PubMed  Google Scholar 

  4. Bergersen TK, Eriksen M, Walloe L (1997) Local constriction of arteriovenous anastomoses in the cooled finger. Am J Physiol 273:R880–R886

    PubMed  CAS  Google Scholar 

  5. Bernardi L, Radaelli A, Solda PL, Coats AJ, Reeder M, Calciati A, Garrard CS, Sleight P (1996) Autonomic control of skin microvessels: assessment by power spectrum of photoplethysmographic waves. Clin Sci 90:345–355

    PubMed  CAS  Google Scholar 

  6. Cannesson M, Besnard C, Durand PG, Bohe J, Jacques D (2005) Relation between respiratory variations in pulse oximetry plethysmographic waveform amplitude and arterial pulse pressure in ventilated patients. Crit Care 9:R562–R568

    Article  PubMed  Google Scholar 

  7. Chan GS, Tang CH, Middleton PM, Cave G, Harvey M, Savkin AV, Lovell NH (2010) Augmented photoplethysmographic low frequency waves at the onset of endotoxic shock in rabbits. Physiol Meas 31:1605–1621

    Article  PubMed  Google Scholar 

  8. Hales JR, Roberts RG, Westerman RA, Stephens FR, Fawcett AA (1993) Evidence for skin microvascular compartmentalization by laser-Doppler and photoplethysmographic techniques. Int J Microcirc Clin Exp 12:99–104

    PubMed  CAS  Google Scholar 

  9. Heitmann A, Huebner T, Schroeder R, Perz S, Voss A (2011) Multivariate short-term heart rate variability: a pre-diagnostic tool for screening heart disease. Med Biol Eng Comput 49:41–50

    Google Scholar 

  10. Javed F, Middleton PM, Malouf P, Chan GS, Savkin AV, Lovell NH, Steel E, Mackie J (2010) Frequency spectrum analysis of finger photoplethysmographic waveform variability during haemodialysis. Physiol Meas 31:1203–1216

    Article  PubMed  Google Scholar 

  11. Larsen PD, Harty M, Thiruchelvam M, Galletly DC (1997) Spectral analysis of AC and DC components of the pulse photoplethysmograph at rest and during induction of anaesthesia. Int J Clin Monit Comput 14:89–95

    Article  PubMed  CAS  Google Scholar 

  12. Lindberg LG, Oberg PA (1991) Photoplethysmography. Part 2. Influence of light source wavelength. Med Biol Eng Comput 29:48–54

    Article  PubMed  CAS  Google Scholar 

  13. Malliani A, Pagani M, Lombardi F, Cerutti S (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84:482–492

    PubMed  CAS  Google Scholar 

  14. Melo J, Peters JI (1999) Low systemic vascular resistance: differential diagnosis and outcome. Crit Care 3:71–77

    Article  PubMed  Google Scholar 

  15. Middleton PM, Henry JA (2000) Pulse oximetry: evolution and directions. Int J Clin Pract 54:438–444

    PubMed  CAS  Google Scholar 

  16. Middleton PM, Chan GS, O’Lone E, Steel E, Carroll R, Celler BG, Lovell NH (2008) Spectral analysis of finger photoplethysmographic waveform variability in a model of mild to moderate haemorrhage. J Clin Monit Comput 22:343–353

    Article  PubMed  Google Scholar 

  17. Middleton PM, Tang CH, Chan GS, Bishop S, Savkin AV, Lovell NL (2010) Peripheral photoplethysmography variability analysis of sepsis patients. Med Biol Eng Comput. doi:10.1007/s11517-010-0713-z

  18. Nilsson L, Johansson A, Kalman S (2003) Respiratory variations in the reflection mode photoplethysmographic signal. Relationships to peripheral venous pressure. Med Biol Eng Comput 41:249–254

    Article  PubMed  CAS  Google Scholar 

  19. Nitzan M, Babchenko A, Shemesh D, Alberton J (2001) Influence of thoracic sympathectomy on cardiac induced oscillations in tissue blood volume. Med Biol Eng Comput 39:579–583

    Article  PubMed  CAS  Google Scholar 

  20. Pagani M, Montano N, Porta A, Malliani A, Abboud FM, Birkett C, Somers VK (1997) Relationship between spectral components of cardiovascular variabilities and direct measures of muscle sympathetic nerve activity in humans. Circulation 95:1441–1448

    PubMed  CAS  Google Scholar 

  21. Parati G, Casadei R, Groppelli A, Di Rienzo M, Mancia G (1989) Comparison of finger and intra-arterial blood pressure monitoring at rest and during laboratory testing. Hypertension 13:647–655

    PubMed  CAS  Google Scholar 

  22. Parati G, Mancia G, Di Rienzo M, Castiglioni P (2006) Point: cardiovascular variability is/is not an index of autonomic control of circulation. J Appl Physiol 101:676–678

    Article  PubMed  Google Scholar 

  23. Piepoli M, Garrard CS, Kontoyannis DA, Bernardi L (1995) Autonomic control of the heart and peripheral vessels in human septic shock. Intensive Care Med 21:112–119

    Article  PubMed  CAS  Google Scholar 

  24. Porret CA, Stergiopulos N, Hayoz D, Brunner HR, Meister JJ (1995) Simultaneous ipsilateral and contralateral measurements of vasomotion in conduit arteries of human upper limbs. Am J Physiol 269:H1852–H1858

    PubMed  CAS  Google Scholar 

  25. Rajendra Acharya U, Paul Joseph K, Kannathal N, Lim CM, Suri JS (2006) Heart rate variability: a review. Med Biol Eng Comput 44:1031–1051

    Article  PubMed  CAS  Google Scholar 

  26. Robinson BJ, Buyck HC, Galletly DC (1994) Effect of propofol on heart rate, arterial pressure and digital plethysmograph variability. Br J Anaesth 73:167–173

    Article  PubMed  CAS  Google Scholar 

  27. Roddie IC (2003) Sympathetic vasodilatation in human skin. J Physiol 548:336–337

    PubMed  CAS  Google Scholar 

  28. Sasano H, Hayano J, Tsuda T, Katsuya H (1999) Effects of sympathetic nerve blockades on low-frequency oscillations of human earlobe skin blood flow. J Auton Nerv Syst 77:60–67

    Article  PubMed  CAS  Google Scholar 

  29. Shelley KH (2007) Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate. Anesth Analg 105:S31–S36

    Article  PubMed  Google Scholar 

  30. Stauss HM, Rarick KR, Deklotz RJ, Sheriff DD (2009) Frequency response characteristics of whole body autoregulation of blood flow in rats. Am J Physiol Heart Circ Physiol 296:H1607–H1616

    Article  PubMed  CAS  Google Scholar 

  31. Tang CH, Middleton PM, Savkin AV, Chan GS, Bishop S, Lovell NH (2010) Non-invasive classification of severe sepsis and systemic inflammatory response syndrome using a nonlinear support vector machine: a preliminary study. Physiol Meas 31:775–793

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank all the staff members in the intensive care unit of Prince of Wales Hospital (Sydney, Australia) for their help and support offered to this study. This work was supported by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Middleton.

Additional information

Paul M Middleton and Gregory SH Chan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Middleton, P.M., Chan, G.S.H., Steel, E. et al. Fingertip photoplethysmographic waveform variability and systemic vascular resistance in intensive care unit patients. Med Biol Eng Comput 49, 859–866 (2011). https://doi.org/10.1007/s11517-011-0749-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0749-8

Keywords

Navigation