Skip to main content
Log in

A microprocessor-controlled tracheal insufflation-assisted total liquid ventilation system

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A prototype time cycled, constant volume, closed circuit perfluorocarbon (PFC) total liquid ventilator system is described. The system utilizes microcontroller-driven display and master control boards, gear motor pumps, and three-way solenoid valves to direct flow. A constant tidal volume and functional residual capacity (FRC) are maintained with feedback control using end-expiratory and end-inspiratory stop-flow pressures. The system can also provide a unique continuous perfusion (bias flow, tracheal insufflation) through one lumen of a double-lumen endotracheal catheter to increase washout of dead space liquid. FRC and arterial blood gases were maintained during ventilation with Rimar 101 PFC over 2–3 h in normal piglets and piglets with simulated pulmonary edema induced by instillation of albumin solution. Addition of tracheal insufflation flow significantly improved the blood gases and enhanced clearance of instilled albumin solution during simulated edema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and respiratory distress syndrome. N Engl J Med 342(18):1301–1308

    Article  Google Scholar 

  2. Brower RG, Ware LB, Berthiaume Y, Matthay MA (2001) Treatment of ARDS. Chest 120(4):1347–1367

    Article  Google Scholar 

  3. Davies MW, Dunster KR, Wilson K (2008) Gas exchange during perfluorocarbon liquid immersion: life-support for the ex utero fetus. Med Hypotheses 71(1):91–98

    Article  Google Scholar 

  4. Davies MW, Fraser JF (2004) Partial liquid ventilation for preventing death and morbidity in adults with acute lung injury and acute respiratory distress syndrome. Cochrane Database Syst Rev (4):CD003707

  5. Degraeuwe PL, Dohmen LR, Geilen JM, Blanco CE (2000) A feedback controller for the maintenance of FRC during tidal liquid ventilation: theory, implementation, and testing. Int J Artif Organs 23(10):680–688

    Google Scholar 

  6. Fox WW, Weis CM, Cox C, Farina C, Drott H, Wolfson MR, Shaffer TH (1997) Pulmonary administration of gentamicin during liquid ventilation in a newborn lamb lung injury model. Pediatrics 100(ES):1–7

    Google Scholar 

  7. Greenspan JS (1993) Liquid ventilation: a developing technology. Neonatal Netw 12:23–32

    Google Scholar 

  8. Hirschl RB, Croce M, Gore D, Wiedemann H, Davis K, Zwischenberger J, Bartlett RH (2002) Prospective, randomized, controlled pilot study of partial liquid ventilation in adult acute respiratory distress syndrome. Am J Respir Crit Care Med 165(6):781–787

    Google Scholar 

  9. Hirschl RB, Merz SI, Montoya JP, Parent A, Wolfson MR, Shaffer TH, Bartlett RH (1995) Development and application of a simplified liquid ventilator. Crit Care Med 23:157–163

    Article  Google Scholar 

  10. Hirschl RB, Parent A, Tooley R, McCracken M, Johnson K, Shaffer TH, Wolfson MR, Bartlett RH (1995) Liquid ventilation improves pulmonary function, gas exchange, and lung injury in a model of respiratory failure. Ann Surg 221(1):79–88

    Article  Google Scholar 

  11. Hirschl RB, Tooley R, Parent A, Johnson K, Bartlett RH (1996) Evaluation of gas exchange, pulmonary compliance, and lung injury during total and partial liquid ventilation in the acute respiratory distress syndrome. Crit Care Med 24(6):1001–1008

    Article  Google Scholar 

  12. Holzer M (2008) Devices for rapid induction of hypothermia. Eur J Anaesthesiol Suppl 42:31–38

    Article  Google Scholar 

  13. Ingenito E, Kamm RD, Watson JW, Slutsky AS (1988) A model of constant-flow ventilation in a dog lung. J Appl Physiol 64(5):2150–2159

    Google Scholar 

  14. Jiang L, Wang Q, Liu Y, Du M, Shen X, Guo X, Wu S (2006) Total liquid ventilation reduces lung injury in piglets after cardiopulmonary bypass. Ann Thorac Surg 82(1):124–130

    Article  Google Scholar 

  15. Kacmarek RM, Wiedemann HP, Lavin PT, Wedel MK, Tutuncu AS, Slutsky AS (1915) Partial liquid ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 173(8):882–889

    Article  Google Scholar 

  16. Koen PA, Wolfson MR, Shaffer TH (1988) Fluorocarbon ventilation: maximal expiratory flows and CO2 elimination. Pediatr Res 24(3):291–296

    Article  Google Scholar 

  17. Larrabe JL, Alvarez FJ, Cuesta EG, Soler A, Alfonso LF, Arnaiz A, Fernandez MB, Loureiro B, Publicover NG, Roman L, Casla JA, Gomez MA (2001) Development of a time-cycled volume-controlled pressure-limited respirator and lung mechanics system for total liquid ventilation. IEEE Trans Biomed Eng 48(10):1134–1144

    Article  Google Scholar 

  18. Lindemann R, Rajka T, Henrichsen T, Vinorum OG, de L, Erichsen A, Fugelseth D (2007) Bronchioalveolar lavage with perfluorochemical liquid during conventional ventilation. Pediatr Crit Care Med 8(5):486–488

    Article  Google Scholar 

  19. Mates EA, Tarczy-Hornoch P, Hildebrandt J, Jackson JC, Hlastala MP (1996) Negative slope of exhaled CO2 profile: implications for ventilation heterogeneity during partial liquid ventilation. Adv Exp Med Biol 388:585–597

    Google Scholar 

  20. Meinhardt JP, Ashton BA, Annich GM, Quintel M, Hirschl RB (2003) The dependency of expiratory airway collapse on pump system and flow rate in liquid ventilated rabbits. Eur J Med Res 8(5):212–220

    Google Scholar 

  21. Meinhardt JP, Quintel M, Hirschl RB (2000) Development and application of a double-piston configured, total-liquid ventilatory support device. Crit Care Med 28(5):1483–1488

    Article  Google Scholar 

  22. Meszaros E, Ogawa R (1997) Continuous low-flow tracheal gas insufflation during partial liquid ventilation in rabbits. Acta Anaesthesiol Scand 41(7):861–867

    Article  Google Scholar 

  23. Nahum A, Sznajder JI, Solway J, Wood LD, Schumacker PT (1988) Pressure, flow, and density relationships in airway models during constant-flow ventilation. J Appl Physiol 64(5):2066–2073

    Google Scholar 

  24. Philips CM, Weis C, Fox WW, Wolfson MR, Shaffer TH (1999) On-line techniques for perfluorochemical vapor sampling and measurement. Biomed Instrum Technol 33(4):348–355

    Google Scholar 

  25. Pizov R, Oppenheim A, Eidelman LA, Weiss YG, Sprung CL, Cotev S (1998) Helium versus oxygen for tracheal gas insufflation during mechanical ventilation. Crit Care Med 26(2):290–295

    Article  Google Scholar 

  26. Robert R, Micheau P, Cyr S, Lesur O, Praud JP, Walti H (2006) A prototype of volume-controlled tidal liquid ventilator using independent piston pumps. ASAIO J 52(6):638–645

    Article  Google Scholar 

  27. Rudiger M, Wendt S, Kothe L, Burkhardt W, Wauer RR, Ochs M (2005) Alterations of alveolar type II cells and intraalveolar surfactant after bronchoalveolar lavage and perfluorocarbon ventilation. An electron microscopical and stereological study in the rat lung. Respir Res 8:40

    Article  Google Scholar 

  28. Shaffer TH, Greenspan JS, Wolfson MR (1994) Liquid ventilation. In: Boynton BR, Carlo WA, Jobe A (eds) New therapies for neonatal respiratory failure. A physiologic approach. Cambridge University Press, New York, pp 279–301

    Google Scholar 

  29. Shaffer TH, Rubenstein D, Moskowitz D, Delivoria-Papadopoulos M (1976) Gaseous exchange and acid–base balance in premature lambs during liquid ventilation since birth. Pediatr Res 10(4):227–231

    Article  Google Scholar 

  30. Staffey KS, Dendi R, Brooks LA, Pretorius AM, Ackermann LW, Zamba KD, Dickson E, Kerber RE (2008) Liquid ventilation with perfluorocarbons facilitates resumption of spontaneous circulation in a swine cardiac arrest model. Resuscitation 78(1):77–84

    Article  Google Scholar 

  31. Tissier R, Hamanaka K, Kuno A, Parker JC, Cohen MV, Downey JM (2006) Total liquid ventilation provides ultra-fast cardioprotective cooling. J Am Coll Cardiol 49(5):601–605

    Article  Google Scholar 

  32. Tredici S, Komori E, Funakubo A, Brant DO, Bull JL, Bartlett RH, Hirschl RB (2004) A prototype of a liquid ventilator using a novel hollow-fiber oxygenator in a rabbit model. Crit Care Med 32(10):2104–2109

    Article  Google Scholar 

  33. Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342(18):1334–1349

    Article  Google Scholar 

  34. Wolfson MR, Hirschl RB, Jackson JC, Gauvin F, Foley DS, Lamm WJ, Gaughan J, Shaffer TH (2008) Multicenter comparative study of conventional mechanical gas ventilation to tidal liquid ventilation in oleic acid injured sheep. ASAIO J 54(3):256–269

    Article  Google Scholar 

  35. Wolfson MR, Miller TF, Peck G, Shaffer TH (1999) Multifactorial analysis of exchanger efficiency and liquid conservation during perfluorochemical liquid-assisted ventilation. Biomed Instrum Technol 33(3):260–267

    Google Scholar 

  36. Wolfson MR, Shaffer TH (2005) Pulmonary applications of perfluorochemical liquids: ventilation and beyond. Paediatr Respir Rev 6(2):117–127 (Review, 135 refs)

    Article  Google Scholar 

  37. Zhu G, Shaffer TH, Wolfson MR (2004) Continuous tracheal gas insufflation during partial liquid ventilation in juvenile rabbits with acute lung injury. J Appl Physiol 96(4):1415–1424

    Article  Google Scholar 

Download references

Acknowledgment

Supported by NIH Grant 2 R42 HL57040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Courtney Parker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 37 kb)

Supplementary material 2 (PPT 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, J.C., Sakla, A., Donovan, F.M. et al. A microprocessor-controlled tracheal insufflation-assisted total liquid ventilation system. Med Biol Eng Comput 47, 931–939 (2009). https://doi.org/10.1007/s11517-009-0517-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0517-1

Keywords

Navigation