Skip to main content
Log in

Salicylic acid-mediated plant defense: Recent developments, missing links, and future outlook

  • Review
  • Published:
Frontiers in Biology

Abstract

Background

Plant pathogens are responsible for many of history’s greatest famines. Understanding how plants defend themselves against pathogens is crucial to preventing future famines. Salicylic acid (SA)-mediated plant defense is a key defense pathway, which plants use to defend against biotrophic and hemi-biotrophic pathogens. As a master regulator of SAmediated plant defense, NPR1 interacts with TGA and WRKY transcription factor families, individual members of which positively or negatively regulate plant defense.

Objective

In this review we describe the recent developments and predict future directions of research on the involvement of circadian rhythm-, autophagy-, and viral RNA silencing-related genes in SA-mediated plant defense on SA, on plant defense, the induction effects of PR proteins, and the mechanisms by which NPR1 regulates defense-related genes.

Methods

We performed an extensive search of current and past literature using the PubMed, Google Scholar, and Google search engines. Our search terms included: “SA-mediated plant defense,” and “NPR1 [AND] salicylic acid.” Other search terms, wildcards, and Boolean operators were paired with “NPR1” or “plant defense” as needed to research more detailed information related to specific topics covered within this review. We also used Google to search for, “economic impact citrus greening,” “aspirin,” “Irish potato famine,” and “rice blast,” among other terms, to gather background information on the history and impact of plant diseases, and the historical use of aspirin.

Results

Of 148 sources found, 132 were directly related to plant defense. The remaining sources are related to the historical and economic impact of plant diseases and the historical use and mechanism of action of aspirin or salicylate. All reviewed sources have been documented in the references section.

Conclusion

The topic of salicylic acid-mediated plant defense is broad, and new research is expanding our understanding of this topic quickly. In this review, we give a basic overview of the historical economic impact of plant diseases, and how an understanding of SA-mediated plant defense can prevent future famines. We provide a basic overview of plant defense, then discuss how SA acts as a defense signaling molecule.We discuss how SA regulates NPR1, which goes on to activate expression of SA-related genes including PR genes. Later, we discuss current research topics, including the role of NPR1 and SA in autophagy, circadian rhythmicity, viral gene silencing, SA biosynthesis, and SAR. We also discuss the potential roles of PR proteins, other SA binding proteins, WRKYand TGA family transcription factors, Elongator, and ER transport proteins in plant defense. Finally, we discuss the potential future routes that research into this topic could take, in order to further our understanding of role SA plays in plant defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agriculture, U.S.D.o. and N.A.S. Service (2015). Citrus Fruits 2015 Summary (September 2015)

    Google Scholar 

  • Alabadí D, Yanovsky M J, Más P, Harmer S L, Kay S A (2002). Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Curr Biol, 12(9): 757–761

    Article  PubMed  Google Scholar 

  • Alamillo J M, Saénz P, García J A (2006). Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco. Plant J, 48(2): 217–227

    Article  CAS  PubMed  Google Scholar 

  • An C, Ding Y, Zhang X, Wang C, Mou Z (2016). Elongator plays a positive role in exogenous NAD-induced defense responses in Arabidopsis. Mol Plant Microbe Interact, 29(5): 396–404

    Article  CAS  PubMed  Google Scholar 

  • An C, Mou Z (2011). Salicylic acid and its function in plant immunity. J Integr Plant Biol, 53(6): 412–428

    Article  CAS  PubMed  Google Scholar 

  • Anand A, Uppalapati S R, Ryu C M, Allen S N, Kang L, Tang Y, Mysore K S (2008). Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol, 146(2): 703–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attaran E, Zeier T E, Griebel T, Zeier J (2009). Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. Plant Cell, 21(3): 954–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell M J, McNellis T W, Mudgett M B, Hsu C S, Staskawicz B J (2001). Mutational analysis of the Arabidopsis RPS2 disease resistance gene and the corresponding pseudomonas syringae avrRpt2 avirulence gene. Mol Plant Microbe Interact, 14(2): 181–188

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee S, Halane M K, Kim S H, Gassmann W (2011). Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators. Science, 334(6061): 1405–1408

    Article  CAS  PubMed  Google Scholar 

  • Billington R A, Bruzzone S, De Flora A, Genazzani A A, Koch-Nolte F, Ziegler M, Zocchi E (2006). Emerging functions of extracellular pyridine nucleotides. Mol Med, 12(11-12): 324–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boller T, Felix G (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by patternrecognition receptors. Annu Rev Plant Biol, 60(1): 379–406

    Article  CAS  PubMed  Google Scholar 

  • Cameron R, Zaton K (2004). Intercellular salicylic acid accumulation is important for age-related resistance in Arabidopsis to Pseudomonas syringae. Physiol Mol Plant Pathol, 65(4): 197–209

    Article  CAS  Google Scholar 

  • Campos L, Granell P, Tárraga S, López-Gresa P, Conejero V, Bellés J M, Rodrigo I, Lisón P (2014). Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens. Plant Physiol Biochem, 77: 35–43

    Article  CAS  PubMed  Google Scholar 

  • Carr J P, Beachy R N, Klessig D F (1989). Are the PR1 proteins of tobacco involved in genetically engineered resistance to TMV? Virology, 169(2): 470–473

    Article  CAS  PubMed  Google Scholar 

  • Carviel J L, Al-Daoud F, Neumann M, Mohammad A, Provart N J, Moeder W, Yoshioka K, Cameron R K (2009). Forward and reverse genetics to identify genes involved in the age-related resistance response in Arabidopsis thaliana. Mol Plant Pathol, 10(5): 621–634

    Article  CAS  PubMed  Google Scholar 

  • Carviel J L, Wilson D C, Isaacs M, Carella P, Catana V, Golding B, Weretilnyk E A, Cameron R K (2014). Investigation of intercellular salicylic acid accumulation during compatible and incompatible Arabidopsis-Pseudomonas syringae interactions using a fast neutrongenerated mutant allele of EDS5 identified by genetic mapping and whole-genome sequencing. PLoS One, 9(3): e88608

    Article  PubMed  PubMed Central  Google Scholar 

  • Chai J, Liu J, Zhou J, Xing D (2014). Mitogen-activated protein kinase 6 regulates NPR1 gene expression and activation during leaf senescence induced by salicylic acid. J Exp Bot, 65(22): 6513–6528

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Chen Z (2002). Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol, 129(2): 706–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, D’Auria J C, Tholl D, Ross J R, Gershenzon J, Noel J P, Pichersky E (2003). An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J, 36(5): 577–588

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Munkvold K R, Gao H, Mathieu J, Schwizer S, Wang S, Yan Y B, Wang J, Martin G B, Chai J (2011). Structural analysis of Pseudomonas syringae AvrPtoB bound to host BAK1 reveals two similar kinase-interacting domains in a type III Effector. Cell Host Microbe, 10(6): 616–626

    Article  CAS  PubMed  Google Scholar 

  • Choi H W, Manohar M, Manosalva P, Tian M, Moreau M, Klessig D F (2016). Activation of plant innate immunity by extracellular high mobility group Box 3 and its inhibition by salicylic acid. PLoS Pathog, 12(3): e1005518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colaneri A C, Tunc-Ozdemir M, Huang J P, Jones A M (2014). Growth attenuation under saline stress is mediated by the heterotrimeric G protein complex. BMC Plant Biol, 14(1): 129–139

    Article  PubMed  PubMed Central  Google Scholar 

  • Curto M, Camafeita E, Lopez J A, Maldonado A M, Rubiales D, Jorrín J V (2006). A proteomic approach to study pea (Pisum sativum) responses to powdery mildew (Erysiphe pisi). Proteomics, 6(S1 Suppl 1): S163–S174

    Article  PubMed  Google Scholar 

  • De Meyer G HM (1997). Salicylic acid produced by the Rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean., Gent, Belgium: Phytopathology.

    Google Scholar 

  • Dean J V, Mohammed L A, Fitzpatrick T (2005). The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures. Planta, 221(2): 287–296

    Article  CAS  PubMed  Google Scholar 

  • Dean J V M, Mills J D (2004). Uptake of salicylic acid 2-O-beta-Dglucose into soybean tonoplast vesicles by an ATP-binding cassette transporter-type mechanism. Physiol Plant, 120(4): 603–612

    Article  CAS  PubMed  Google Scholar 

  • Delaney T P (2005). Salicylic Acid. In: Davies P J (Ed.), Plant Hormones: Biosynthesis, Signal Tranduction, Action!, Kluwer Academic Publishers, Dordrecht, The Netherlands. pp. 635–653

    Google Scholar 

  • Delaney T P, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994). A central role of salicylic acid in plant disease resistance. Science, 266(5188): 1247–1250

    Article  CAS  PubMed  Google Scholar 

  • Després C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert P R (2003). The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell, 15(9): 2181–2191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Després C, De Long C, Glaze S, Liu E, Fobert P R (2000). The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell, 12(2): 279–290

    Article  PubMed  PubMed Central  Google Scholar 

  • De Witt D L, el-Harith E A, Kraemer S A, Andrews M J, Yao E F, Armstrong R L, Smith W L (1990). The aspirin and heme-binding sites of ovine and murine prostaglandin endoperoxide synthases. J Biol Chem, 265(9): 5192–5198

    Google Scholar 

  • Ding Y, Dommel M, Mou Z (2016). Abscisic acid promotes proteasomemediated degradation of the transcription coactivator NPR1 in Arabidopsis thaliana. Plant J, 86(1): 20–34

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Chen C, Chen Z (2003). Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol, 51(1): 21–37

    Article  CAS  PubMed  Google Scholar 

  • Durrant W E, Dong X (2004). Systemic acquired resistance. Annu Rev Phytopathol, 42(1): 185–209

    Article  CAS  PubMed  Google Scholar 

  • Edgar R S, Green E W, Zhao Y, van Ooijen G, Olmedo M, Qin X, Xu Y, Pan M, Valekunja U K, Feeney K A, Maywood E S, Hastings M H, Baliga N S, Merrow M, Millar A J, Johnson C H, Kyriacou C P, O’Neill J S, Reddy A B (2012). Peroxiredoxins are conserved markers of circadian rhythms. Nature, 485(7399): 459–464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eulgem T, Rushton P J, Robatzek S, Somssich I E (2000). The WRKY superfamily of plant transcription factors. Trends Plant Sci, 5(5): 199–206

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Somssich I E (2007). Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol, 10(4): 366–371

    Article  CAS  PubMed  Google Scholar 

  • Falk A, Feys B J, Frost L N, Jones J D, Daniels M J, Parker J E (1999). EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc Natl Acad Sci USA, 96(6): 3292–3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan W, Dong X (2002). In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell, 14(6): 1377–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feys B J, Moisan L J, Newman M A, Parker J E (2001). Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J, 20(19): 5400–5411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feys B J, Wiermer M, Bhat R A, Moisan L J, Medina-Escobar N, Neu C, Cabral A, Parker J E (2005). Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell, 17(9): 2601–2613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fragnière C, Serrano M, Abou-Mansour E, Métraux J P, L’Haridon F (2011). Salicylic acid and its location in response to biotic and abiotic stress. FEBS Lett, 585(12): 1847–1852

    Article  PubMed  CAS  Google Scholar 

  • Fu J, Kreibich G (2000). Retention of subunits of the oligosaccharyltransferase complex in the endoplasmic reticulum. J Biol Chem, 275(6): 3984–3990

    Article  CAS  PubMed  Google Scholar 

  • Fu Z Q, Dong X (2013). Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol, 64(1): 839–863

    Article  CAS  PubMed  Google Scholar 

  • Gamir J, Darwiche R, Van't Hof P, Choudhary V, Stumpe M, Schneiter R, Mauch F (2017). The sterol-binding activity of PATHOGENESISRELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein. The Plant Journal, 89(3):502–509

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol, 43(1): 205–227

    Article  CAS  PubMed  Google Scholar 

  • Goldfine A B, Fonseca V, Jablonski K A, Chen Y D, Tipton L, Staten M A, Shoelson S E, and the Targeting Inflammation Using Salsalate in Type 2 Diabetes Study Team (2013). Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann Intern Med, 159(1): 1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Govrin E M L, Levine A (2002). Infection of Arabidopsis with a necrotrophic pathogen, Botrytis cinerea, elicits various defense responses but does not induce systemic acquired resistance (SAR). Plant Mol Biol, 48(3): 267–276

    Article  CAS  PubMed  Google Scholar 

  • Gráda Ó C (2007). Ireland's Great Famine. Dublin: University College Dublin Press

    Google Scholar 

  • Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Ohsumi Y (2002). Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol, 129(3): 1181–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harmer S L (2009). The circadian system in higher plants. Annu Rev Plant Biol, 60(1): 357–377

    Article  CAS  PubMed  Google Scholar 

  • Hawley S A, Fullerton M D, Ross F A, Schertzer J D, Chevtzoff C, Walker K J, Peggie MW, Zibrova D, Green K A, Mustard K J, Kemp B E, Sakamoto K, Steinberg G R, Hardie D G (2012). The ancient drug salicylate directly activates AMP-activated protein kinase. Science, 336(6083): 918–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidrich K, Wirthmueller L, Tasset C, Pouzet C, Deslandes L, Parker J E (2011). Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science, 334(6061): 1401–1404

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou Y H, Yu J Q, Chen Z (2010). Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol, 153(4): 1526–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa A (2009). The Arabidopsis G-protein-subunit is required for defense response against Agrobacterium tumefaciens. Biosci Biotechnol Biochem, 73(1): 47–52

    Article  CAS  PubMed  Google Scholar 

  • Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F, and the bZIP Research Group (2002). bZIP transcription factors in Arabidopsis. Trends Plant Sci, 7(3): 106–111

    Article  CAS  PubMed  Google Scholar 

  • Jelenska J, Yao N, Vinatzer B A, Wright C M, Brodsky J L, Greenberg J T (2007). A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Curr Biol, 17(6): 499–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji L H, Ding S W (2001). The suppressor of transgene RNA silencing encoded by Cucumber mosaic virus interferes with salicylic acidmediated virus resistance. Mol Plant Microbe Interact, 14(6): 715–724

    Article  CAS  PubMed  Google Scholar 

  • Jirage D, Tootle T L, Reuber T L, Frost L N, Feys B J, Parker J E, Ausubel F M, Glazebrook J (1999). Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Natl Acad Sci USA, 96(23): 13583–13588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jovel J, Walker M, Sanfaçon H (2011). Salicylic acid-dependent restriction of Tomato ringspot virus spread in tobacco is accompanied by a hypersensitive response, local RNA silencing, and moderate systemic resistance. Mol Plant Microbe Interact, 24(6): 706–718

    Article  CAS  PubMed  Google Scholar 

  • Kasprzewska A (2003). Plant chitinases–regulation and function. Cell Mol Biol Lett, 8(3): 809–824

    CAS  PubMed  Google Scholar 

  • Kauffmann S, Legrand M, Geoffroy P, Fritig B (1987). Biological function of; pathogenesis-related’ proteins: four PR proteins of tobacco have 1, 3-β-glucanase activity. EMBO J, 6(11): 3209–3212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H S, Delaney T P (2002). Over-expression of TGA5, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR-independent resistance in Arabidopsis thaliana to Peronospora parasitica. Plant J, 32(2): 151–163

    Article  CAS  PubMed  Google Scholar 

  • Kim S H, Kwon S I, Bhattacharjee S, Gassmann W (2009). Regulation of defense gene expression by Arabidopsis SRFR1. Plant Signal Behav, 4(2): 149–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klopffleisch K, Phan N, Augustin K, Bayne R S, Booker K S, Botella J R, Carpita N C, Carr T, Chen J G, Cooke T R, Frick-Cheng A, Friedman E J, Fulk B, Hahn MG, Jiang K, Jorda L, Kruppe L, Liu C, Lorek J, McCann M C, Molina A, Moriyama E N, Mukhtar M S, Mudgil Y, Pattathil S, Schwarz J, Seta S, Tan M, Temp U, Trusov Y, Urano D, Welter B, Yang J, Panstruga R, Uhrig J F, Jones A M (2011). Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis. Mol Syst Biol, 7(1): 532

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong Q, Sun T, Qu N, Ma J, Li M, Cheng Y T, Zhang Q, Wu D, Zhang Z, Zhang Y (2016). Two redundant receptor-like cytoplasmic kinases function downstream of pattern recognition receptors to regulate activation of SA biosynthesis. Plant Physiol, 171(2): 1344–1354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp E, Ghosh S (1994). Inhibition of NF-kappa B by sodium salicylate and aspirin. Science, 265(5174): 956–959

    Article  CAS  PubMed  Google Scholar 

  • Kunta M, Sétamou M, Skaria M, Rascoe J E, Li W, Nakhla M K, da Graça J V (2012). First report of citrus huanglongbing in Texas. Phytopathology, 102: S4

    Article  Google Scholar 

  • Kwon S I, Kim S H, Bhattacharjee S, Noh J J, Gassmann W (2009). SRFR1, a suppressor of effector-triggered immunity, encodes a conserved tetratricopeptide repeat protein with similarity to transcriptional repressors. Plant J, 57(1): 109–119

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Rojas C M, Ishiga Y, Pandey S, Mysore K S (2013). Arabidopsis heterotrimeric G-proteins play a critical role in host and nonhost resistance against Pseudomonas syringae pathogens. PLoS One, 8(12): e82445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Legrand M, Kauffmann S, Geoffroy P, Fritig B (1987). Biological function of pathogenesis-related proteins: Four tobacco pathogenesis-related proteins are chitinases. Proc Natl Acad Sci USA, 84(19): 6750–6754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Brader G, Palva E T (2004). The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell, 16(2): 319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin K H, Lin K H (1956) THE CITRUS HUANG LUNG BIN (GREENING) DISEASE IN CHINA. Acta Phytopathologica Sinica, Vol. II, Part 1, No. I, and Part 2, p. 1–11 and 14–38

    Google Scholar 

  • Liu J, Ding P, Sun T, Nitta Y, Dong O, Huang X, Yang W, Li X, Botella J R, Zhang Y (2013). Heterotrimeric G proteins serve as a converging point in multiple receptor-like kinases. Plant Physiol, 161(4):: 2146–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Sonbol F M, Huot B, Gu Y, Withers J, Mwimba M, Yao J, He S Y, Dong X (2016). Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effectortriggered immunity. Nat Commun, 7:13099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorek J, Griebel T, Jones A M, Kuhn H, Panstruga R (2013). The role of Arabidopsis heterotrimeric G-protein subunits in MLO2 function and MAMP-triggered immunity. Mol Plant Microbe Interact, 26(9): 991–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Greenberg J T, Holuigue L (2016). Editorial: Salicylic acid signaling networks. Front Plant Sci, 7: 238

    PubMed  PubMed Central  Google Scholar 

  • Lu S X, Knowles S M, Andronis C, Ong M S, Tobin E M (2009). CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL function synergistically in the circadian clock of Arabidopsis. Plant Physiol, 150(2): 834–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackey D, Belkhadir Y, Alonso J M, Ecker J R, Dangl J L (2003). Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell, 112(3): 379–389

    Article  CAS  PubMed  Google Scholar 

  • Maeda K, Houjyou Y, Komatsu T, Hori H, Kodaira T, Ishikawa A (2009). AGB1 and PMR5 contribute to PEN2-mediated preinvasion resistance to Magnaporthe oryzae in Arabidopsis thaliana. Mol Plant Microbe Interact, 22(11): 1331–1340

    Article  CAS  PubMed  Google Scholar 

  • Mangelsen E, Kilian J, Berendzen K W, Kolukisaoglu U H, Harter K, Jansson C, Wanke D (2008). Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics, 28(9):194

    Article  CAS  Google Scholar 

  • Mauch-Mani B, Slusarenko A J (1996). Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell, 8(2): 203–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClung C R (2008). Comes a time. Curr Opin Plant Biol, 11(5): 514–520

    Article  CAS  PubMed  Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004). Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol, 55(6): 853–867

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhara I, Iwai T, Seo S, Yanagawa Y, Kawahigasi H, Hirose S, Ohkawa Y, Ohashi Y (2008). Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense-related signal compounds (121/180). Mol Genet Genomics, 279(4): 415–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song H R, Carré I A, Coupland G (2002). LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev Cell, 2(5): 629–641

    Article  CAS  PubMed  Google Scholar 

  • Mosher S, Moeder W, Nishimura N, Jikumaru Y, Joo S H, Urquhart W, Klessig D F, Kim S K, Nambara E, Yoshioka K (2010). The lesionmimic mutant cpr22 shows alterations in abscisic acid signaling and abscisic acid insensitivity in a salicylic acid-dependent manner. Plant Physiol, 152(4): 1901–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou Z, Fan W, Dong X (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell, 113(7): 935–944

    Article  CAS  PubMed  Google Scholar 

  • Munch D, Rodriguez E, Bressendorff S, Park O K, Hofius D, Petersen M (2014). Autophagy deficiency leads to accumulation of ubiquitinated proteins, ER stress, and cell death in Arabidopsis. Autophagy, 10(9): 1579–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers R L (2007). The 100 most important chemical compounds: a reference guide. p. 10–12.

    Google Scholar 

  • Nawrath C, Heck S, Parinthawong N, Métraux J P (2002). EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell, 14(1): 275–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ndamukong I, Abdallat A A, Thurow C, Fode B, Zander M, Weigel R, Gatz C (2007). SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J, 50(1): 128–139

    Article  CAS  PubMed  Google Scholar 

  • Nobuta K, Okrent R A, Stoutemyer M, Rodibaugh N, Kempema L, Wildermuth M C, Innes RW (2007). The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis. Plant Physiol, 144(2): 1144–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pajerowska-Mukhtar K M, Emerine D K, Mukhtar M S (2013). Tell me more: roles of NPRs in plant immunity. Trends Plant Sci, 18(7): 402–411

    Article  CAS  PubMed  Google Scholar 

  • Parker J E, Holub E B, Frost L N, Falk A, Gunn N D, Daniels M J (1996). Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell, 8(11): 2033–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM J, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees S C (2012). Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol, 28(1): 489–521

    Article  CAS  PubMed  Google Scholar 

  • Pontier D, Miao Z H, Lam E (2001). Trans-dominant suppression of plant TGA factors reveals their negative and positive roles in plant defense responses. Plant J, 27(6): 529–538

    Article  CAS  PubMed  Google Scholar 

  • Preston F E, Whipps S, Jackson C A, French A J, Wyld P J, Stoddard C J (1981). Inhibition of prostacyclin and platelet thromboxane A2 after low-dose aspirin. N Engl J Med, 304(2): 76–79

    Article  CAS  PubMed  Google Scholar 

  • Prins T W, Tudzynski P, von Tiedemann A, Tudzynski B, Have A T, Hansen M E, Tenberge K, van Kan J A L (2000). Infection Strategies of Botrytis cinerea and related necrotrophic pathogens. Fungal Pathology: p. 33–64

    Chapter  Google Scholar 

  • Raskin I (1992). Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol, 43(1): 439–462

    Article  CAS  Google Scholar 

  • Raskin I, Skubatz H, Tang W, Meeuse B J D (1990). Salicylic acid levels in thermogenic and non-thermogenic plants. Ann Bot (Lond), 66(4): 369–373

    Article  CAS  Google Scholar 

  • Ross D (2002). Ireland: History of a Nation. Glasgow: Geddes& Grosset.

    Google Scholar 

  • Saleh A, Withers J, Mohan R, Marqués J, Gu Y, Yan S, Zavaliev R, Nomoto M, Tada Y, Dong X (2015). Posttranslational modifications of the master transcriptional regulator NPR1 enable dynamic but tight control of plant immune responses. Cell Host Microbe, 18(2): 169–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scardaci S C (2016). Rice Blast: A New Disease in California. (Web Document)April 5.

    Google Scholar 

  • Shine MB, Yang J W, El-Habbak M, Nagyabhyru P, Fu D Q, Navarre D, Ghabrial S, Kachroo P, Kachroo A (2016). Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. New Phytologist, 212(3):627–636

    Article  CAS  PubMed  Google Scholar 

  • Shulaev V, Silverman P, Raskin I (1997). Methyl salicylate–an airborn signal in pathogen resistance. Nature, 6618: 718–721

    Article  Google Scholar 

  • Slaymaker D H, Navarre D A, Clark D, del Pozo O, Martin G B, Klessig D F (2002). The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci USA, 99(18): 11640–11645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith W L, Garavito R M, DeWitt D L (1996). Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and-2. J Biol Chem, 271(52): 33157–33160

    Article  CAS  PubMed  Google Scholar 

  • Spoel S H, Johnson J S, Dong X (2007). Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci USA, 104(47): 18842–18847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoel S H, Mou Z, Tada Y, Spivey N W, Genschik P, Dong X (2009). Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell, 137(5): 860–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoel S H, Mou Z, Zhang X, Pieterse CMJ, Dong X (2006). Regulatory Roles of NPR1 in Plant Defense: Regulation and Function. Utrecht University Repository

    Google Scholar 

  • Strawn M A, Marr S K, Inoue K, Inada N, Zubieta C, Wildermuth M C (2007). Arabidopsis isochorismate synthase functional in pathogeninduced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J Biol Chem, 282(8): 5919–5933

    Article  CAS  PubMed  Google Scholar 

  • Tada Y, Spoel S H, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008). Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins. Science, 321(5891): 952–956

    Article  CAS  PubMed  Google Scholar 

  • Talbot N J (2003). On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annu Rev Microbiol, 57(1): 177–202

    Article  CAS  PubMed  Google Scholar 

  • Spreen T H (2012). The Economic Impact of HLB on the Florida Citrus Industry, in Food and Resource Economics. University of Florida

    Google Scholar 

  • Tian M, von Dahl C C, Liu P P, Friso G, van Wijk K J, Klessig D F (2012). The combined use of photoaffinity labeling and surface plasmon resonance-based technology identifies multiple salicylic acid-binding proteins. Plant J, 72(6): 1027–1038

    Article  CAS  PubMed  Google Scholar 

  • Torres M A, Morales J, Sánchez-Rodríguez C, Molina A, Dangl J L (2013). Functional interplay between Arabidopsis NADPH oxidases and heterotrimeric G protein. Mol Plant Microbe Interact, 26(6): 686–694

    Article  CAS  PubMed  Google Scholar 

  • Trombetta E S, Parodi A J (2003). Quality control and protein folding in the secretory pathway. Annu Rev Cell Dev Biol, 19(1): 649–676

    Article  CAS  PubMed  Google Scholar 

  • Tsuda K, Katagiri F (2010). Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr Opin Plant Biol, 13(4): 459–465

    Article  CAS  PubMed  Google Scholar 

  • Tully J P, Hill A E, Ahmed H M, Whitley R, Skjellum A, Mukhtar M S (2014). Expression-based network biology identifies immune-related functional modules involved in plant defense. BMC Genomics, 15 (1): 421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van der Does D, Leon-Reyes A, Koornneef A, Van Verk M C, Rodenburg N, Pauwels L, Goossens A, Körbes A P, Memelink J, Ritsema T, Van Wees S C, Pieterse C M (2013). Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell, 25(2): 744–761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Loon L C, Rep M, Pieterse C M (2006). Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol, 44(1): 135–162

    Article  PubMed  CAS  Google Scholar 

  • van Verk M C, Neeleman L, Bol J F, Linthorst H J (2011). Tobacco transcription factor NtWRKY12 interacts with TGA2.2 in vitro and in vivo. Front Plant Sci, 2(32): 32

    PubMed  PubMed Central  Google Scholar 

  • Vitale A, Denecke J (1999). The endoplasmic reticulum-gateway of the secretory pathway. Plant Cell, 11(4): 615–628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner S, Stuttmann J, Rietz S, Guerois R, Brunstein E, Bautor J, Niefind K, Parker J E (2013). Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity. Cell Host Microbe, 14(6): 619–630

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Amornsiripanitch N, Dong X (2006). A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog, 2(11): e123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang D, Weaver N D, Kesarwani M, Dong X (2005). Induction of protein secretory pathway is required for systemic acquired resistance. Science, 308(5724): 1036–1040

    Article  CAS  PubMed  Google Scholar 

  • Wang G Y, Shi J L, Ng G, Battle S L, Zhang C, Lu H (2011). Circadian clock-regulated phosphate transporter PHT4;1 plays an important role in Arabidopsis defense. Mol Plant, 4(3): 516–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Barnaby J Y, Tada Y, Li H, Tör M, Caldelari D, Lee D U, Fu X D, Dong X (2011b). Timing of plant immune responses by a central circadian regulator. Nature, 470(7332): 110–114

    Article  CAS  PubMed  Google Scholar 

  • Wiermer M, Feys B J, Parker J E (2005). Plant immunity: the EDS1 regulatory node. Curr Opin Plant Biol, 8(4): 383–389

    Article  CAS  PubMed  Google Scholar 

  • Wu C T, Leubner-Metzger G, Meins F Jr, Bradford K J (2001). Class I- 1, 3-glucanase and chitinase are expressed in the micropylar endosperm of tomato seeds prior to radicle emergence. Plant Physiol, 126(3): 1299–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Chen H, Curtis C, Fu Z Q (2014). Go in for the kill: How plants deploy effector-triggered immunity to combat pathogens. Virulence, 5(7): 710–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang C, Miao Z, Lam E (1997). DNA-binding properties, genomic organization and expression pattern of TGA6, a new member of the TGA family of bZIP transcription factors in Arabidopsis thaliana. Plant Mol Biol, 34(3): 403–415

    Article  CAS  PubMed  Google Scholar 

  • Yi S Y, Kwon S Y (2014). How does SA signaling link the Flg22 responses? Plant Signal Behav, 9(11): e972806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yi S Y, Min S R, Kwon S Y (2015). NPR1 is instrumental in priming for the Enhanced flg22-induced MPK3 and MPK6 activation. Plant Pathol J, 31(2): 192–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin M J, Yamamoto Y, Gaynor R B (1998). The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinasebeta. Nature, 396(6706): 77–80

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009). Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell, 21(9): 2914–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu D, Chen C, Chen Z (2001). Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell, 13(7): 1527–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng W, He S Y (2010). A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiol, 153(3): 1188–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Xie Q, Anderson R G, Ng G, Seitz N C, Peterson T, McClung C R, McDowell J M, Kong D, Kwak J M, Lu H (2013). Crosstalk between the circadian clock and innate immunity in Arabidopsis. PLoS Pathog, 9(6): e1003370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Mou Z (2009). Extracellular pyridine nucleotides induce PR gene expression and disease resistance in Arabidopsis. Plant J, 57(2): 302–312

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Fan W, Kinkema M, Li X, Dong X (1999). Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc Natl Acad Sci USA, 96(11): 6523–6528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Qamar S A, Chen Z, Mengiste T (2006). Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J, 48(4): 592–605

    Article  CAS  PubMed  Google Scholar 

  • Zhou J M, Trifa Y, Silva H, Pontier D, Lam E, Shah J, Klessig D F (2000). NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant Microbe Interact, 13(2): 191–202

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Wang W, Karapetyan S, Mwimba M, Marqués J, Buchler N E, Dong X (2015). Redox rhythm reinforces the circadian clock to gate immune response. Nature, 523(7561): 472–476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu S, Jeong R D, Venugopal S C, Lapchyk L, Navarre D, Kachroo A, Kachroo P (2011). SAG101 forms a ternary complex with EDS1 and PAD4 and is required for resistance signaling against turnip crinkle virus. PLoS Pathog, 7(11): e1002318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is financially supported by NSF EAGER grant 1464527 (Z.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Qing Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmer, I.A., Shang, Z. & Fu, Z.Q. Salicylic acid-mediated plant defense: Recent developments, missing links, and future outlook. Front. Biol. 12, 258–270 (2017). https://doi.org/10.1007/s11515-017-1460-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-017-1460-4

Keywords

Navigation