Skip to main content
Log in

Modeling neurodegenerative disorders in adult somatic cells: A critical review

  • Review
  • Published:
Frontiers in Biology

Abstract

Development of new therapeutic targets for neurodegenerative disorders has been hampered by a reliance on post mortem tissue that is representative of end-stage disease, or on animal models that fail to provide faithful analogs. However, rapid advances in cellular genetic reprogramming, in particular the induction of somatic cells into stem cells, or directly into neurons, has led to intense interest in modeling of human neurodegeneration in vitro. Here, we critically review current methods and recent progress in cellular models of Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Several challenges are identified, including technical variability, lack of degenerative phenotypes, neurodevelopmental age and establishing ground truths for models of sporadic disease. Recommendations for evaluating neurodegenerative cellular models are proposed along with suggestions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anokye-Danso F, Snitow M, Morrisey E E (2012). How microRNAs facilitate reprogramming to pluripotency. J Cell Sci, 125(Pt 18): 4179–4187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulting G L, Kiskinis E, Croft G F, Amoroso M W, Oakley D H, Wainger B J, Williams D J, Kahler D J, Yamaki M, Davidow L, Rodolfa C T, Dimos J T, Mikkilineni S, MacDermott A B, Woolf C J, Henderson C E, Wichterle H, Eggan K (2011). A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol, 29(3): 279–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braak H, Braak E 1998. Evolution of neuronal changes in the course of Alzheimer’s disease. In: Jellinger K, Fazekas F, Windisch M (eds.) Ageing and Dementia. Vienna: Springer Vienna

    Google Scholar 

  • Braak H, Brettschneider J, Ludolph A C, Lee VM, Trojanowski J Q, Del Tredici K (2013). Amyotrophic lateral sclerosis—a model of corticofugal axonal spread. Nat Rev Neurol, 9(12): 708–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K (2004). Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res, 318(1): 121–134

    Article  PubMed  Google Scholar 

  • Brayne C (2007). The elephant in the room- healthy brains in later life, epidemiology and public health. Nat Rev Neurosci, 8(3): 233–239

    Article  CAS  PubMed  Google Scholar 

  • Breitner J C (2015). Comment: Yet another “disconnect” between amyloid and Alzheimer disease? Neurology, 85 (8): 698

    Article  PubMed  Google Scholar 

  • Bruijn L I, Becher M W, Lee M K, Anderson K L, Jenkins N A, Copeland N G, Sisodia S S, Rothstein J D, Borchelt D R, Price D L, Cleveland D W (1997). ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron, 18(2): 327–338

    Article  CAS  PubMed  Google Scholar 

  • Burkhardt M F, Martinez F J, Wright S, Ramos C, Volfson D, Mason M, Garnes J, Dang V, Lievers J, Shoukat-Mumtaz U, Martinez R, Gai H, Blake R, Vaisberg E, Grskovic M, Johnson C, Irion S, Bright J, Cooper B, Nguyen L, Griswold-Prenner I, Javaherian A (2013). A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol Cell Neurosci, 56: 355–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byers B, Cord B, Nguyen H N, Schüle B, Fenno L, Lee P C, Deisseroth K, Langston J W, Pera R R, Palmer T D (2011). SNCA triplication Parkinson’s patient’s iPSC-derived DA neurons accumulate a- synuclein and are susceptible to oxidative stress. PLoS ONE, 6 (11): e26159–e26159

    Article  PubMed  PubMed Central  Google Scholar 

  • Byrne J A (2008). Generation of isogenic pluripotent stem cells. Hum Mol Genet, 17(R1): R37–R41

    Article  CAS  PubMed  Google Scholar 

  • Cairns N J, Perrin R J, Franklin E E, Carter D, Vincent B, Xie M, Bateman R J, Benzinger T, Friedrichsen K, Brooks W S, Halliday G M, McLean C, Ghetti B, Morris J C, the Alzheimer Disease Neuroimaging Initiative, the Dominantly Inherited Alzheimer Network (2015). Neuropathologic assessment of participants in two multi-center longitudinal observational studies: the Alzheimer Disease Neuroimaging Initiative (ADNI) and the Dominantly Inherited Alzheimer Network (DIAN). Neuropathology, 35(4): 390–400

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi S H, Kim Y H, Hebisch M, Sliwinski C, Lee S, D’Avanzo C, Chen H, Hooli B, Asselin C, Muffat J, Klee J B, Zhang C, Wainger B J, Peitz M, Kovacs D M, Woolf C J, Wagner S L, Tanzi R E, Kim D Y (2014). A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature, 515(7526): 274–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coan G, Mitchell C S (2015). An assessment of possible neuropathology and clinical relationships in 46 Sporadic amyotrophic lateral sclerosis patient autopsies. Neurodegener Dis, 15(5): 301–312

    Article  CAS  PubMed  Google Scholar 

  • Collins P Y, Patel V, Joestl S S, March D, Insel T R, Daar A S, Anderson W, Dhansay MA, Phillips A, Shurin S, Walport M, Ewart W, Savill S J, Bordin I A, Costello E J, Durkin M, Fairburn C, Glass R I, Hall W, Huang Y, Hyman S E, Jamison K, Kaaya S, Kapur S, Kleinman A, Ogunniyi A, Otero-Ojeda A, Poo M M, Ravindranath V, Sahakian B J, Saxena S, Singer P A, Stein D J, the Scientific Advisory Board and the Executive Committee of the Grand Challenges on Global Mental Health (2011). Grand challenges in global mental health. Nature, 475 (7354): 27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crystal H A, Dickson D, Sliwinski M, Masur D, Blau A, Lipton R B (1996). Associations of status and change measures of neuropsychological function with pathologic changes in elderly, originally nondemented subjects. Arch Neurol, 53(1): 82–87

    Article  CAS  PubMed  Google Scholar 

  • Dauer W, Przedborski S (2003). Parkinson’s disease: mechanisms and models. Neuron, 39(6): 889–909

    Article  CAS  PubMed  Google Scholar 

  • Duan L, Bhattacharyya B J, Belmadani A, Pan L, Miller R J, Kessler J A (2014). Stem cell derived basal forebrain cholinergic neurons from Alzheimer’s disease patients are more susceptible to cell death. Mol Neurodegener, 9(1): 3–3

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández-Santiago R, Carballo-Carbajal I, Castellano G, Torrent R, Richaud Y, Sánchez-Danés A, Vilarrasa-Blasi R, Sánchez-Pla A, Mosquera J L, Soriano J, López-Barneo J, Canals J M, Alberch J, Raya Á, Vila M, Consiglio A, Martín-Subero J I, Ezquerra M, Tolosa E (2015). Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson’s disease patients. EMBO Mol Med, 7 (12): 1529–1546

    Article  PubMed  PubMed Central  Google Scholar 

  • Gandhi S, Wood NW (2010). Genome-wide association studies: the key to unlocking neurodegeneration? Nat Neurosci, 13(7): 789–794

    Article  CAS  PubMed  Google Scholar 

  • Gurney M E, Pu H, Chiu A Y, Dal Canto M C, Polchow C Y, Alexander D D, Caliendo J, Hentati A, Kwon YW, Deng H X, et (1994). Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science, 264(5166): 1772–1775

    Article  CAS  PubMed  Google Scholar 

  • Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere M L, Pahwa J S, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan A R, Lovestone S, Powell J, Proitsi P, Lupton M K, Brayne C, Rubinsztein D C, Gill M, Lawlor B, Lynch A, Morgan K, Brown K S, Passmore P A, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith A D, Love S, Kehoe P G, Hardy J, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schürmann B, Heun R, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frölich L, Hampel H, Hüll M, Rujescu D, Goate A M, Kauwe J S, Cruchaga C, Nowotny P, Morris J C, Mayo K, Sleegers K, Bettens K, Engelborghs S, de Deyn P P, van Broeckhoven C, Livingston G, Bass N J, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw C E, Tsolaki M, Singleton A B, Guerreiro R, Mühleisen T W, Nöthen M M, Moebus S, Jöckel K H, Klopp N, Wichmann H E, Carrasquillo MM, Pankratz V S, Younkin S G, Holmans P A, O’Donovan M, Owen M J, Williams J (2009). Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet, 41(10): 1088–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda M, Minami I, Tooi N, Morone N, Nishioka H, Uemura K, Kinoshita A, Heuser J E, Nakatsuji N, Aiba K (2016). The modeling of Alzheimer’s disease by the overexpression of mutant Presenilin 1 in human embryonic stem cells. Biochem Biophys Res Commun, 469(3): 587–592

    Article  CAS  PubMed  Google Scholar 

  • Hossini A M, Megges M, Prigione A, Lichtner B, Toliat M R, Wruck W, Schröter F, Nuernberg P, Kroll H, Makrantonaki E, Zouboulis C C, Adjaye J (2015). Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer’s disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics, 16 (1): 84

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 341(6146): 651–654

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Qiu B, Guan W, Wang Q, Wang M, Li W, Gao L, Shen L, Huang Y, Xie G, Zhao H, Jin Y, Tang B, Yu Y, Zhao J, Pei G (2015a). Direct conversion of normal and Alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell, 17(2): 204–212

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Pu J, Jiang H, Zhong P, Qiu J, Li F, Wang X, Zhang B, Yan Z, Feng J (2015b). Generation of naivetropic induced pluripotent stem cells from Parkinson’s disease patients for high-efficiency genetic manipulation and disease modeling. Stem Cells Dev, 24(21): 2591–2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Israel M A, Yuan S H, Bardy C, Reyna S M, Mu Y, Herrera C, Hefferan M P, van Gorp S, Nazor K L, Boscolo F S, Carson C T, Laurent L C, Marsala M, Gage F H, Remes A M, Koo E H, Goldstein L S B (2012). Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature, 482(7384): 216–220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ittner L M, Götz J (2011). Amyloid-ß and tau—a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci, 12(2): 65–72

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Kim C H, Moon J I, Chung Y G, Chang M Y, Han B S, Ko S, Yang E, Cha K Y, Lanza R, Kim K S (2009). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4(6): 472–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y H, Choi S H, D’Avanzo C, Hebisch M, Sliwinski C, Bylykbashi E, Washicosky K J, Klee J B, Brüstle O, Tanzi R E, Kim D Y (2015). A 3D human neural cell culture system for modeling Alzheimer’s disease. Nat Protoc, 10(7): 985–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, Imamura K, Egawa N, Yahata N, Okita K, Takahashi K, Asaka I, Aoi T, Watanabe A, Watanabe K, Kadoya C, Nakano R, Watanabe D, Maruyama K, Hori O, Hibino S, Choshi T, Nakahata T, Hioki H, Kaneko T, Naitoh M, Yoshikawa K, Yamawaki S, Suzuki S, Hata R, Ueno S, Seki T, Kobayashi K, Toda T, Murakami K, Irie K, Klein W L, Mori H, Asada T, Takahashi R, Iwata N, Yamanaka S, Inoue H (2013). Modeling Alzheimer’s disease with iPSCs reveals streßs phenotypes associated with intracellular Aß and differential drug responsiveness. Cell Stem Cell, 12(4): 487–496

    Article  CAS  PubMed  Google Scholar 

  • Kyttälä A, Moraghebi R, Valensisi C, Kettunen J, Andrus C, Pasumarthy K K, Nakanishi M, Nishimura K, Ohtaka M, Weltner J, van Handel B, Parkkonen O, Sinisalo J, Jalanko A, Hawkins R D, Woods N B, Otonkoski T, Trokovic R (2016). Genetic variability overrides the impact of parental cell type and determines iPSC differentiation potential. Stem Cell Rep, 6(2): 200–212

    Article  Google Scholar 

  • Ladewig J, Mertens J, Kesavan J, Doerr J, Poppe D, Glaue F, Herms S, Wernet P, Kögler G, Müller F J, Koch P, Brüstle O (2012). Small molecules enable highly efficient neuronal conversion of human fibroblasts. Nat Methods, 9(6): 575–578

    Article  CAS  PubMed  Google Scholar 

  • Lambert J C, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido M J, Tavernier B, Letenneur L, Bettens K, Berr C, Pasquier F, Fiévet N, Barberger-Gateau P, Engelborghs S, de Deyn P, Mateo I, Franck A, Helisalmi S, Porcellini E, Hanon O, de Pancorbo M M, Lendon C, Dufouil C, Jaillard C, Leveillard T, Alvarez V, Bosco P, Mancuso M, Panza F, Nacmias B, Bossù P, Piccardi P, Annoni G, Seripa D, Galimberti D, Hannequin D, Licastro F, Soininen H, Ritchie K, Blanché H, Dartigues J F, Tzourio C, Gut I, van Broeckhoven C, Alpérovitch A, Lathrop M, Amouyel P, the European Alzheimer’s Disease Initiative Investigators (2009). Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet, 41(10): 1094–1099

    Article  CAS  PubMed  Google Scholar 

  • Lancaster M A, Knoblich J A (2014). Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc, 9(10): 2329–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancaster M A, Renner M, Martin C A, Wenzel D, Bicknell L S, Hurles M E, Homfray T, Penninger J M, Jackson A P, Knoblich J A (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501(7467): 373–379

    Article  CAS  PubMed  Google Scholar 

  • Lapasset L, Milhavet O, Prieur A, Besnard E, Babled A, Aït-Hamou N, Leschik J, Pellestor F, Ramirez JM, de Vos J, Lehmann S, Lemaitre J M (2011). Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev, 25(21): 2248–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau S, Rylander Ottosson D, Jakobsson J, Parmar M (2014). Direct neural conversion from human fibroblasts using self-regulating and nonintegrating viral vectors. Cell Reports, 9(5): 1673–1680

    Article  CAS  PubMed  Google Scholar 

  • Li W, Zhou H, Abujarour R, Zhu S, Young Joo J, Lin T, Hao E, Schöler H R, Hayek A, Ding S (2009). Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells, 27(12): 2992–3000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim SM, Choi WJ, Oh K W, Xue Y, Choi J Y, Kim S H, Nahm M, Kim Y E, Lee J, Noh M Y, Lee S, Hwang S, Ki C S, Fu X D, Kim S H (2016). Directly converted patient-specific induced neurons mirror the neuropathology of FUS with disrupted nuclear localization in amyotrophic lateral sclerosis. Mol Neurodegener, 11 (1): 8

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, Lin X, Hahm H S, Hao E, Hayek A, Ding S (2009). A chemical platform for improved induction of human iPSCs. Nat Methods, 6(11): 805–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liras A, Segovia C, Gabán A S (eds.) (2013). Induced Pluripotent Stem Cells: Therapeutic Applications in Monogenic and Metabolic Diseases, and Regulatory and Bioethical Considerations. InTechOpen

    Google Scholar 

  • Liu M L, Zang T, Zhang C L (2016). Direct lineage reprogramming reveals disease-specific phenotypes of motor neurons from human ALS patients. Cell Reports, 14(1): 115–128

    Article  CAS  PubMed  Google Scholar 

  • Liu ML, Zang T, Zou Y, Chang J C, Gibson J R, Huber KM, Zhang C L (2013). Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nat Commun, 4: 2183

    PubMed  PubMed Central  Google Scholar 

  • Mahmoudi S, Brunet A (2012). Aging and reprogramming: a two-way street. Curr Opin Cell Biol, 24(6): 744–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marion R M, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, Serrano M, Blasco M A (2009). Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell, 4(2): 141–154

    Article  CAS  PubMed  Google Scholar 

  • Mascalchi M, Salvi F, Valzania F, Marcacci G, Bartolozzi C, Tassinari C A (1995). Corticospinal tract degeneration in motor neuron disease. AJNR Am J Neuroradiol, 16(4 Suppl): 878–880

    CAS  PubMed  Google Scholar 

  • Mertens J, Paquola A C, Ku M, Hatch E, Böhnke L, Ladjevardi S, McGrath S, Campbell B, Lee H, Herdy J R, Gonçalves J T, Toda T, Kim Y, Winkler J, Yao J, Hetzer M W, Gage F H (2015). Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell, 17(6): 705–718

    Article  CAS  PubMed  Google Scholar 

  • Miller J D, Ganat Y M, Kishinevsky S, Bowman R L, Liu B, Tu E Y, Mandal P K, Vera E, Shim J W, Kriks S, Taldone T, Fusaki N, Tomishima M J, Krainc D, Milner T A, Rossi D J, Studer L (2013). Human iPSC-based modeling of late-onset disease via progerininduced aging. Cell Stem Cell, 13(6): 691–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muratore C R, Rice H C, Srikanth P, Callahan D G, Shin T, Benjamin L N, Walsh D M, Selkoe D J, Young-Pearse T L (2014). The familial Alzheimer’s disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Hum Mol Genet, 23(13): 3523–3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol, 26(1): 101–106

    Article  CAS  PubMed  Google Scholar 

  • Narsinh K H, Sun N, Sanchez-Freire V, Lee A S, Almeida P, Hu S, Jan T, Wilson K D, Leong D, Rosenberg J, Yao M, Robbins R C, Wu J C (2011). Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells. J Clin Invest, 121(3): 1217–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta E, Nihira T, Uchino A, Imaizumi Y, Okada Y, Akamatsu W, Takahashi K, Hayakawa H, Nagai M, Ohyama M, Ryo M, Ogino M, Murayama S, Takashima A, Nishiyama K, Mizuno Y, Mochizuki H, Obata F, Okano H 2015. I2020T mutant LRRK2 iPSC-derived neurons in the Sagamihara family exhibit increased Tau phosphorylation through the AKT/GSK-3 signaling pathway. Human Mol Genet, 24(17):4879–4900

  • Okita K, Ichisaka T, Yamanaka S (2007). Generation of germlinecompetent induced pluripotent stem cells. Nature, 448(7151): 313–317

    Article  CAS  PubMed  Google Scholar 

  • Ooi L, Sidhu K, Poljak A, Sutherland G, O’Connor M D, Sachdev P, Münch G (2013). Induced pluripotent stem cells as tools for disease modelling and drug discovery in Alzheimer’s disease. J Neural Transm (Vienna), 120(1): 103–111

    Article  Google Scholar 

  • Pang Z P, Yang N, Vierbuchen T, Ostermeier A, Fuentes D R, Yang T Q, Citri A, Sebastiano V, Marro S, Südhof T C, Wernig M (2011). Induction of human neuronal cells by defined transcription factors. Nature, 476(7359): 220–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pasinelli P, Brown R H (2006). Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci, 7(9): 710–723

    Article  CAS  PubMed  Google Scholar 

  • Price J L, Ko A I, Wade MJ, Tsou S K, McKeel DW, Morris J C (2001). Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol, 58(9): 1395–1402

    Article  CAS  PubMed  Google Scholar 

  • Ring K L, An M C, Zhang N, O’Brien R N, Ramos EM, Gao F, Atwood R, Bailus B J, Melov S, Mooney S D, Coppola G, Ellerby L M, the RING (2015). Genomic analysis reveals disruption of striatal neuronal development and therapeutic targets in human Hungtinton’s disease neural stem cells. Stem Cell Rep, 5(6): 1023–1038

    Article  CAS  Google Scholar 

  • Ring K L, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, Walker D, Zhang W R, Kreitzer A C, Huang Y (2012). Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell, 11(1): 100–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan S D, Dolatabadi N, Chan S F, Zhang X, Akhtar M W, Parker J, Soldner F, Sunico C R, Nagar S, Talantova M, Lee B, Lopez K, Nutter A, Shan B, Molokanova E, Zhang Y, Han X, Nakamura T, Masliah E, Yates J R, Nakanishi N, Andreyev A Y, Okamoto S, Jaenisch R, Ambasudhan R, Lipton S A (2013). Isogenic human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction in MEF2-PGC1a transcription. Cell, 155(6): 1351–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster J, Halvardson J, Pilar Lorenzo L, Ameur A, Sobol M, Raykova D, Annerén G, Feuk L, Dahl N (2015). Transcriptome profiling reveals degree of variability in induced pluripotent stem cell lines: Impact for human disease modeling. Cell Reprogram, 17(5): 327–337

    Article  CAS  PubMed  Google Scholar 

  • Seibler P, Graziotto J, Jeong H, Simunovic F, Klein C, Krainc D (2011). Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J Neurosci, 31 (16): 5970–5976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A (2008). Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol, 6 (10): e253

    Article  Google Scholar 

  • Soldner F, Hockemeyer D, Beard C, Gao Q, Bell G W, Cook E G, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009). Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136(5): 964–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soldner F, Laganière J, Cheng A W, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe L I, Myers R H, Lindquist S, Zhang L, Guschin D, Fong L K, Vu B J, Meng X, Urnov F D, Rebar E J, Gregory P D, Zhang H S, Jaenisch R (2011). Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell, 146(2): 318–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommer C A, Christodoulou C, Gianotti-Sommer A, Shen S S, Sailaja B S, Hezroni H, Spira A, Meshorer E, Kotton D N, Mostoslavsky G (2012). Residual expression of reprogramming factors affects the transcriptional program and epigenetic signatures of induced pluripotent stem cells. PLoS ONE, 7 (12): e51711

    Article  Google Scholar 

  • Sproul A, Jacob S, Paquet D, Ortiz-Virumbrales M, Campos B, Gandy S, Tessier-Lavigne M, Noggle S (2014). Using familial Alzheimer’s disease and isogenic control IPSc-derived basal forebrain neurons to model AD. Alzheimers Dement, 10 (4): 643–P644

    Article  Google Scholar 

  • Strong M J, Yang W (2011). The frontotemporal syndromes of ALS. Clinicopathological correlates. J Mol Neurosci, 45(3): 648–655

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Blazey T M, Owen C J, Christensen J J, Friedrichsen K, Joseph-Mathurin N, Wang Q, Hornbeck R C, Ances B M, Snyder A Z, Cash L A, Koeppe R A, Klunk W E, Galasko D, Brickman A M, McDade E, Ringman JM, Thompson PM, Saykin A J, Ghetti B, Sperling R A, Johnson K A, Salloway S P, Schofield P R, Masters C L, Villemagne V L, Fox N C, Förster S, Chen K, Reiman E M, Xiong C, Marcus D S, Weiner M W, Morris J C, Bateman R J, Benzinger T L, the Dominantly Inherited Alzheimer Network (2016). Quantitative amyloid imaging in autosomal dominant Alzheimer’s disease: Results from the DIAN study group. PLoS ONE, 11 (3): e0152082

    Google Scholar 

  • Suhr S T, Chang E A, Tjong J, Alcasid N, Perkins G A, Goissis M D, Ellisman M H, Perez G I, Cibelli J B (2010). Mitochondrial rejuvenation after induced pluripotency. PLoS ONE, 5 (11): e14095

    Article  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5): 861–872

    Article  CAS  PubMed  Google Scholar 

  • Tanzi R E, Bertram L (2005). Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell, 120(4): 545–555

    Article  CAS  PubMed  Google Scholar 

  • Thatava T, Kudva Y C, Edukulla R, Squillace K, de Lamo J G, Khan Y K, Sakuma T, Ohmine S, Terzic A, Ikeda Y (2013). Intrapatient variations in type 1 diabetes-specific iPS cell differentiation into insulin-producing cells. Mol Ther, 21(1): 228–239

    Article  CAS  PubMed  Google Scholar 

  • The Medical Research Council Cognitive Function and Ageing Study (MRC CFAS) (1998). Cognitive function and dementia in six areas of England and Wales: the distribution of MMSE and prevalence of GMS organicity level in the MRC CFA Study. Psychol Med, 28(2): 319–335

    Article  Google Scholar 

  • Tsai M S, Tangalos E G, Petersen R C, Smith G E, Schaid D J, Kokmen E, Ivnik R J, Thibodeau S N (1994). Apolipoprotein E: risk factor for Alzheimer disease. Am J Hum Genet, 54(4): 643–649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vera E, Studer L (2015). When rejuvenation is a problem: challenges of modeling late-onset neurodegenerative disease. Development, 142 (18): 3085–3089

    Article  CAS  PubMed  Google Scholar 

  • Vierbuchen T, Ostermeier A, Pang Z P, Kokubu Y, Südhof T C, Wernig M (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284): 1035–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wapinski O L, Vierbuchen T, Qu K, Lee Q Y, Chanda S, Fuentes D R, Giresi P G, Ng Y H, Marro S, Neff N F, Drechsel D, Martynoga B, Castro D S, Webb A E, Südhof T C, Brunet A, Guillemot F, Chang H Y, Wernig M (2013). Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell, 155(3): 621–635

    Article  CAS  PubMed  Google Scholar 

  • West MJ, Coleman P D, Flood D G, Troncoso J C (1994). Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet, 344(8925): 769–772

    Article  CAS  PubMed  Google Scholar 

  • Wilcock DM (2010). The usefulness and challenges of transgenic mouse models in the study of Alzheimer’s disease. CNS Neurol Disord Drug Targets, 9(4): 386–394

    Article  CAS  PubMed  Google Scholar 

  • Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H, Suzuki N (2011). Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet, 20(23): 4530–4539

    Article  CAS  PubMed  Google Scholar 

  • Yoo A S, Sun A X, Li L, Shcheglovitov A, Portmann T, Li Y, Lee- Messer C, Dolmetsch R E, Tsien R W, Crabtree G R (2011). MicroRNA-mediated conversion of human fibroblasts to neurons. Nature, 476(7359): 228–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Freed C R (2009). Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells, 27 (11): 2667–2674

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Valenzuela.

Additional information

Contributed equally to the work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truong, A., Si, E., Duncan, T. et al. Modeling neurodegenerative disorders in adult somatic cells: A critical review. Front. Biol. 11, 232–245 (2016). https://doi.org/10.1007/s11515-016-1413-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-016-1413-3

Navigation