Skip to main content
Log in

The bacterial and host factors associated with extrapulmonary dissemination of Mycobacterium tuberculosis

  • Review
  • Published:
Frontiers in Biology

Abstract

With high morbidity and mortality worldwide, tuberculosis (TB) is still an important public health threat. The majority of human TB cases are caused by Mycobacterium tuberculosis. Although pulmonary TB is the most common presentation, M. tuberculosis can disseminate into other organs and causes extrapulmonary TB (EPTB). The dissemination of bacteria from the initial site of infection to other organs can lead to fatal diseases, such as miliary and meningeal TB. Thoroughly understanding the mechanisms and pathways of dissemination would develop therapies to prevent the lethal prognosis of EPTB (miliary and meningeal TB) and vaccines to promote the development of adaptive immunity. This review focuses on risk factors of EPTB, bacterial and host genes involved in EPTB, and potential mechanisms of M. tuberculosis extrapulmonary dissemination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams D O (1976). The granulomatous inflammatory response. A review. Am J Pathol, 84(1): 164–192

    CAS  Google Scholar 

  • Alvarado-Esquivel C, García-Corral N, Carrero-Dominguez D, Enciso-Moreno J A, Gurrola-Morales T, Portillo-Gómez L, Rossau R, Mijs W (2009). Molecular analysis of Mycobacterium isolates from extrapulmonary specimens obtained from patients in Mexico. BMC Clin Pathol, 9(1): 1

    PubMed Central  PubMed  Google Scholar 

  • American Thoracic Society, Infectious Diseases Society of America (2000). Diagnostic standards and classification of tuberculosis in adults and children. Am J Respir Crit Care Med, 161(4 Pt 1): 1376–1395

    Google Scholar 

  • Antonucci G, Girardi E, Raviglione MC, Ippolito G (1995). Risk factors for tuberculosis in HIV-infected persons. A prospective cohort study. The Gruppo Italiano di Studio Tubercolosi e AIDS (GISTA). JAMA, 274(2): 143–148

    CAS  PubMed  Google Scholar 

  • Arias M, Zabaleta J, Rodríguez J I, Rojas M, París S C, García L F (1997). Failure to induce nitric oxide production by human monocyte-derived macrophages. Manipulation of biochemical pathways. Allergol Immunopathol (Madr), 25(6): 280–288

    CAS  Google Scholar 

  • Arruda S, Bomfim G, Knights R, Huima-Byron T, Riley L W (1993). Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science, 261(5127): 1454–1457

    CAS  PubMed  Google Scholar 

  • Asghar R J, Pratt R H, Kammerer J S, Navin T R (2008). Tuberculosis in South Asians living in the United States, 1993–2004. Arch Intern Med, 168(9): 936–942

    PubMed  Google Scholar 

  • Barnes P F, Barrows S A (1993). Tuberculosis in the 1990s. Ann Intern Med, 119(5): 400–410

    CAS  PubMed  Google Scholar 

  • Barrios-Payán J, Saqui-Salces M, Jeyanathan M, Alcántara-Vazquez A, Castañon-Arreola M, Rook G, Hernandez-Pando R (2012). Extrapulmonary locations of Mycobacterium tuberculosis DNA during latent infection. J Infect Dis, 206(8): 1194–1205

    PubMed  Google Scholar 

  • Bates M N, Khalakdina A, Pai M, Chang L, Lessa F, Smith K R (2007). Risk of tuberculosis from exposure to tobacco smoke: a systematic review and meta-analysis. Arch Intern Med, 167(4): 335–342

    PubMed  Google Scholar 

  • Be N A, Lamichhane G, Grosset J, Tyagi S, Cheng Q J, Kim K S, Bishai W R, Jain S K (2008). Murine model to study the invasion and survival of Mycobacterium tuberculosis in the central nervous system. J Infect Dis, 198(10): 1520–1528

    PubMed  Google Scholar 

  • Bekker L G, Moreira A L, Bergtold A, Freeman S, Ryffel B, Kaplan G (2000). Immunopathologic effects of tumor necrosis factor alpha in murine mycobacterial infection are dose dependent. Infect Immun, 68(12): 6954–6961

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boom WH, Canaday D H, Fulton S A, Gehring A J, Rojas R E, Torres M (2003). Human immunity to M. tuberculosis: T cell subsets and antigen processing. Tuberculosis (Edinb), 83(1–3): 98–106

    CAS  Google Scholar 

  • Bouley D M, Ghori N, Mercer K L, Falkow S, Ramakrishnan L (2001). Dynamic nature of host-pathogen interactions in Mycobacterium marinum granulomas. Infect Immun, 69(12): 7820–7831

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brewer T F, Heymann S J (2005). Long time due: reducing tuberculosis mortality in the 21st century. Arch Med Res, 36(6): 617–621

    PubMed  Google Scholar 

  • Cailhol J, Decludt B, Che D (2005). Sociodemographic factors that contribute to the development of extrapulmonary tuberculosis were identified. J Clin Epidemiol, 58(10): 1066–1071

    PubMed  Google Scholar 

  • Campbell G R, Spector S A (2012). Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy. PLoS Pathog, 8(5): e1002689

    CAS  PubMed Central  PubMed  Google Scholar 

  • Camus J C, Pryor MJ, Médigue C, Cole S T (2002). Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology, 148(Pt 10): 2967–2973

    CAS  PubMed  Google Scholar 

  • Caruso A M, Serbina N, Klein E, Triebold K, Bloom B R, Flynn J L (1999). Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J Immunol, 162(9): 5407–5416

    CAS  PubMed  Google Scholar 

  • Casali N, Riley L W (2007). A phylogenomic analysis of the Actinomycetales mce operons. BMC Genomics, 8(1): 60

    PubMed Central  PubMed  Google Scholar 

  • Castro-Garza J, King C H, Swords W E, Quinn F D (2002). Demonstration of spread by Mycobacterium tuberculosis bacilli in A549 epithelial cell monolayers. FEMS Microbiol Lett, 212(2): 145–149

    CAS  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (CDC) (2008). Trends in tuberculosis—United States, 2007. MMWR Morb Mortal Wkly Rep, 57(11): 281–285

    Google Scholar 

  • Chan-Yeung M, Noertjojo K, Chan S L, Tam C M (2002). Sex differences in tuberculosis in Hong Kong. Int J Tuberc Lung Dis, 6(1): 11–18

    CAS  PubMed  Google Scholar 

  • Chang J C, Harik N S, Liao R P, Sherman D R (2007). Identification of Mycobacterial genes that alter growth and pathology in macrophages and in mice. J Infect Dis, 196(5): 788–795

    CAS  PubMed  Google Scholar 

  • Chawla M, Parikh P, Saxena A, Munshi M, Mehta M, Mai D, Srivastava A K, Narasimhulu K V, Redding K E, Vashi N, Kumar D, Steyn A J, Singh A (2012). Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo. Mol Microbiol, 85(6): 1148–1165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chiang C Y, Slama K, Enarson D A (2007). Associations between tobacco and tuberculosis. Int J Tuberc Lung Dis, 11(3): 258–262

    CAS  PubMed  Google Scholar 

  • Cirillo S L, Subbian S, Chen B, Weisbrod T R, Jacobs WR Jr, Cirillo J D (2009). Protection of Mycobacterium tuberculosis from reactive oxygen species conferred by the mel2 locus impacts persistence and dissemination. Infect Immun, 77(6): 2557–2567

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clay H, Davis J M, Beery D, Huttenlocher A, Lyons S E, Ramakrishnan L (2007). Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish. Cell Host Microbe, 2(1): 29–39

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cole S T (2002). Comparative and functional genomics of the Mycobacterium tuberculosis complex. Microbiology, 148(Pt 10): 2919–2928

    CAS  PubMed  Google Scholar 

  • Cole S T, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon S V, Eiglmeier K, Gas S, Barry C E 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail M A, Rajandream M A, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston J E, Taylor K, Whitehead S, Barrell B G (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393(6685): 537–544

    CAS  PubMed  Google Scholar 

  • Cooper A M, Dalton D K, Stewart T A, Griffin J P, Russell D G, Orme I M (1993). Disseminated tuberculosis in interferon gamma genedisrupted mice. J Exp Med, 178(6): 2243–2247

    CAS  PubMed  Google Scholar 

  • Dannenberg A M Jr (1989). Immune mechanisms in the pathogenesis of pulmonary tuberculosis. Rev Infect Dis, 11(Suppl 2): S369–S378

    PubMed  Google Scholar 

  • Davis J M, Ramakrishnan L (2009). The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell, 136(1): 37–49

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davis N K, Chater K F (1992). The Streptomyces coelicolor whiB gene encodes a small transcription factor-like protein dispensable for growth but essential for sporulation. Mol Gen Genet, 232(3): 351–358

    CAS  PubMed  Google Scholar 

  • de Jong R, Altare F, Haagen I A, Elferink D G, Boer T, van Breda Vriesman P J, Kabel P J, Draaisma J M, van Dissel J T, Kroon F P, Casanova J L, Ottenhoff T H (1998). Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science, 280(5368): 1435–1438

    PubMed  Google Scholar 

  • Dobos K M, Spotts E A, Quinn F D, King C H (2000). Necrosis of lung epithelial cells during infection with Mycobacterium tuberculosis is preceded by cell permeation. Infect Immun, 68(11): 6300–6310

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards D, Kirkpatrick C H (1986). The immunology of mycobacterial diseases. Am Rev Respir Dis, 134(5): 1062–1071

    CAS  PubMed  Google Scholar 

  • Farer L S, Lowell A M, Meador M P (1979). Extrapulmonary tuberculosis in the United States. Am J Epidemiol, 109(2): 205–217

    CAS  PubMed  Google Scholar 

  • Fenton M J, Vermeulen MW (1996). Immunopathology of tuberculosis: roles of macrophages and monocytes. Infect Immun, 64(3): 683–690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fernando S L, Saunders B M, Sluyter R, Skarratt K K, Goldberg H, Marks G B, Wiley J S, Britton W J (2007). A polymorphism in the P2X7 gene increases susceptibility to extrapulmonary tuberculosis. Am J Respir Crit Care Med, 175(4): 360–366

    CAS  PubMed  Google Scholar 

  • Fiske C T, Griffin M R, Erin H, Warkentin J, Lisa K, Arbogast P G, Sterling T R (2010). Black race, sex, and extrapulmonary tuberculosis risk: an observational study. BMC Infect Dis, 10(1): 16

    PubMed Central  PubMed  Google Scholar 

  • Flynn J L, Chan J (2001). Immunology of tuberculosis. Annu Rev Immunol, 19(1): 93–129

    CAS  PubMed  Google Scholar 

  • Forssbohm M, Zwahlen M, Loddenkemper R, Rieder H L (2008). Demographic characteristics of patients with extrapulmonary tuberculosis in Germany. Eur Respir J, 31(1): 99–105

    CAS  PubMed  Google Scholar 

  • Fortune S M, Solache A, Jaeger A, Hill P J, Belisle J T, Bloom B R, Rubin E J, Ernst J D (2004). Mycobacterium tuberculosis inhibits macrophage responses to IFN-gamma through myeloid differentiation factor 88-dependent and-independent mechanisms. J Immunol, 172(10): 6272–6280

    CAS  PubMed  Google Scholar 

  • Gioffré A, Infante E, Aguilar D, Santangelo M P, Klepp L, Amadio A, Meikle V, Etchechoury I, Romano M I, Cataldi A, Hernández R P, Bigi F (2005). Mutation in mce operons attenuates Mycobacterium tuberculosis virulence. Microbes Infect, 7(3): 325–334

    PubMed  Google Scholar 

  • Gombart A F, Borregaard N, Koeffler H P (2005). Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1, 25-dihydroxyvitamin D3. FASEB J, 19(9): 1067–1077

    CAS  PubMed  Google Scholar 

  • Gonzalez O Y, Adams G, Teeter L D, Bui T T, Musser J M, Graviss E A (2003). Extra-pulmonary manifestations in a large metropolitan area with a low incidence of tuberculosis. Int J Tuberc Lung Dis, 7(12): 1178–1185

    CAS  PubMed  Google Scholar 

  • Gordon A H, Hart P D, Young M R (1980). Ammonia inhibits phagosome-lysosome fusion in macrophages. Nature, 286(5768): 79–80

    CAS  PubMed  Google Scholar 

  • Goren M B, D’Arcy Hart P, Young M R, Armstrong J A (1976). Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis. Proc Natl Acad Sci USA, 73(7): 2510–2514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haas D W, Des Prez R M (1994). Tuberculosis and acquired immunodeficiency syndrome: a historical perspective on recent developments. Am J Med, 96(5): 439–450

    CAS  PubMed  Google Scholar 

  • Harris S S (2006). Vitamin D and African Americans. J Nutr, 136(4): 1126–1129

    CAS  PubMed  Google Scholar 

  • Hart P D, Young M R, Jordan M M, Perkins W J, Geisow M J (1983). Chemical inhibitors of phagosome-lysosome fusion in cultured macrophages also inhibit saltatory lysosomal movements. A combined microscopic and computer study. J Exp Med, 158(2): 477–492

    CAS  PubMed  Google Scholar 

  • Henao M I, Montes C, París S C, García L F (2006). Cytokine gene polymorphisms in Colombian patients with different clinical presentations of tuberculosis. Tuberculosis (Edinb), 86(1): 11–19

    CAS  Google Scholar 

  • Henkle E, Winthrop K L (2015). Nontuberculous mycobacteria infections in immunosuppressed hosts. Clin Chest Med, 36(1): 91–99

    PubMed  Google Scholar 

  • Hoal-Van Helden E G, Epstein J, Victor T C, Hon D, Lewis L A, Beyers N, Zurakowski D, Ezekowitz A B, Van Helden P D (1999). Mannosebinding protein B allele confers protection against tuberculous meningitis. Pediatr Res, 45(4 Pt 1): 459–464

    CAS  PubMed  Google Scholar 

  • Holmes C B, Hausler H, Nunn P (1998). A review of sex differences in the epidemiology of tuberculosis. Int J Tuberc Lung Dis, 2(2): 96–104

    CAS  PubMed  Google Scholar 

  • Hopewell P (1994). Overview of Clinical Tuberculosis. In: Barry B (ed.). Tuberculosis: Pathogenesis, Protection and Control. ASM Press, Washington, DC. pp. 25–46

    Google Scholar 

  • Hsu T, Hingley-Wilson S M, Chen B, Chen M, Dai A Z, Morin P M, Marks C B, Padiyar J, Goulding C, Gingery M, Eisenberg D, Russell R G, Derrick S C, Collins F M, Morris S L, King C H, Jacobs W R Jr (2003). The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci USA, 100(21): 12420–12425

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hudelson P (1996). Gender differentials in tuberculosis: the role of socio-economic and cultural factors. Tuber Lung Dis, 77(5): 391–400

    CAS  PubMed  Google Scholar 

  • Jones B E, Young SM, Antoniskis D, Davidson P T, Kramer F, Barnes P F (1993). Relationship of the manifestations of tuberculosis to CD4 cell counts in patients with human immunodeficiency virus infection. Am Rev Respir Dis, 148(5): 1292–1297

    CAS  PubMed  Google Scholar 

  • Jouanguy E, Altare F, Lamhamedi S, Revy P, Emile J F, Newport M, Levin M, Blanche S, Seboun E, Fischer A, Casanova J L (1996). Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guérin infection. N Engl J Med, 335(26): 1956–1961

    CAS  PubMed  Google Scholar 

  • Kapur V, Whittam T S, Musser J M (1994). Is Mycobacterium tuberculosis 15, 000 years old? J Infect Dis, 170(5): 1348–1349

    CAS  PubMed  Google Scholar 

  • Kaufmann S H (2002). Protection against tuberculosis: cytokines, T cells, and macrophages. Ann Rheum Dis, 61(Suppl 2): ii54–ii58

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keane J, Gershon S, Wise R P, Mirabile-Levens E, Kasznica J, Schwieterman W D, Siegel J N, Braun M M (2001). Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med, 345(15): 1098–1104

    CAS  PubMed  Google Scholar 

  • Kim J H, Lee S Y, Lee S H, Sin C, Shim J J, In K H, Yoo S H, Kang K H (2003). NRAMP1 genetic polymorphisms as a risk factor of tuberculous pleurisy. Int J Tuberc Lung Dis, 7(4): 370–375

    CAS  PubMed  Google Scholar 

  • Kinhikar A G, Verma I, Chandra D, Singh K K, Weldingh K, Andersen P, Hsu T, Jacobs W R Jr, Laal S (2010). Potential role for ESAT6 in dissemination of M. tuberculosis via human lung epithelial cells. Mol Microbiol, 75(1): 92–106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar A, Bose M, Brahmachari V (2003). Analysis of expression profile of mammalian cell entry (mce) operons of Mycobacterium tuberculosis. Infect Immun, 71(10): 6083–6087

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lado Lado F L, Barrio Gómez E, Carballo Arceo E, Cabarcos Ortíz de Barrón A, Lado F L, Barrio Gómez E (1999). Clinical presentation of tuberculosis and the degree of immunodeficiency in patients with HIV infection. Scand J Infect Dis, 31(4): 387–391

    CAS  PubMed  Google Scholar 

  • Lebrun P, Raze D, Fritzinger B, Wieruszeski J M, Biet F, Dose A, Carpentier M, Schwarzer D, Allain F, Lippens G, Locht C (2012). Differential contribution of the repeats to heparin binding of HBHA, a major adhesin of Mycobacterium tuberculosis. PLoS ONE, 7(3): e32421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee M P, Chan J W, Ng K K, Li P C (2000). Clinical manifestations of tuberculosis in HIV-infected patients. Respirology, 5(4): 423–426

    CAS  PubMed  Google Scholar 

  • Levin M, Newport M J, D’Souza S, Kalabalikis P, Brown I N, Lenicker H M, Agius P V, Davies E G, Thrasher A, Klein N, et al (1995). Familial disseminated atypical mycobacterial infection in childhood: a human mycobacterial susceptibility gene?. Lancet, 345(8942): 79–83

    CAS  PubMed  Google Scholar 

  • Lin C Y, Chen T C, Lu P L, Lai C C, Yang Y H, Lin W R, Huang P M, Chen Y H (2013). Effects of gender and age on development of concurrent extrapulmonary tuberculosis in patients with pulmonary tuberculosis: a population based study. PLoS ONE, 8(5): e63936

    PubMed Central  PubMed  Google Scholar 

  • Lin P L, Myers A, Smith L, Bigbee C, Bigbee M, Fuhrman C, Grieser H, Chiosea I, Voitenek N N, Capuano S V, Klein E, Flynn J L (2010). Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum, 62(2): 340–350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu P T, Stenger S, Li H, Wenzel L, Tan B H, Krutzik S R, Ochoa M T, Schauber J, Wu K, Meinken C, Kamen D L, Wagner M, Bals R, Steinmeyer A, Zügel U, Gallo R L, Eisenberg D, Hewison M, Hollis B W, Adams J S, Bloom B R, Modlin R L (2006). Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science, 311(5768): 1770–1773

    CAS  PubMed  Google Scholar 

  • MacMicking J D, Taylor G A, McKinney J D (2003). Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science, 302(5645): 654–659

    CAS  PubMed  Google Scholar 

  • Malik Z A, Iyer S S, Kusner D J (2001). Mycobacterium tuberculosis phagosomes exhibit altered calmodulin-dependent signal transduction: contribution to inhibition of phagosome-lysosome fusion and intracellular survival in human macrophages. J Immunol, 166(5): 3392–3401

    CAS  PubMed  Google Scholar 

  • Manca C, Tsenova L, Bergtold A, Freeman S, Tovey M, Musser J M, Barry C E 3rd, Freedman V H, Kaplan G (2001). Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha /beta. Proc Natl Acad Sci USA, 98(10): 5752–5757

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martineau A R, Wilkinson R J, Wilkinson K A, Newton S M, Kampmann B, Hall B M, Packe G E, Davidson R N, Eldridge S M, Maunsell Z J, Rainbow S J, Berry J L, Griffiths C J (2007). A single dose of vitamin D enhances immunity to mycobacteria. Am J Respir Crit Care Med, 176(2): 208–213

    CAS  PubMed  Google Scholar 

  • Martinez A N, Rhee J T, Small PM, Behr MA (2000). Sex differences in the epidemiology of tuberculosis in San Francisco. Int J Tuberc Lung Dis, 4(1): 26–31

    CAS  PubMed  Google Scholar 

  • McDonough K A, Kress Y (1995). Cytotoxicity for lung epithelial cells is a virulence-associated phenotype of Mycobacterium tuberculosis. Infect Immun, 63(12): 4802–4811

    CAS  PubMed Central  PubMed  Google Scholar 

  • McDonough K A, Kress Y, Bloom B R (1993). Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages. Infect Immun, 61(7): 2763–2773

    CAS  PubMed Central  PubMed  Google Scholar 

  • McKinney J D, Höner zu Bentrup K, Muñoz-Elías E J, Miczak A, Chen B, Chan W T, Swenson D, Sacchettini J C, Jacobs W R Jr, Russell D G (2000). Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature, 406(6797): 735–738

    CAS  PubMed  Google Scholar 

  • Menozzi F D, Bischoff R, Fort E, Brennan M J, Locht C (1998). Molecular characterization of the mycobacterial heparin-binding hemagglutinin, a mycobacterial adhesin. Proc Natl Acad Sci USA, 95(21): 12625–12630

    CAS  PubMed Central  PubMed  Google Scholar 

  • Menozzi F D, Rouse J H, Alavi M, Laude-Sharp M, Muller J, Bischoff R, Brennan M J, Locht C (1996). Identification of a heparin-binding hemagglutinin present in mycobacteria. J Exp Med, 184(3): 993–1001

    CAS  PubMed  Google Scholar 

  • Musellim B, Erturan S, Sonmez Duman E, Ongen G (2005). Comparison of extra-pulmonary and pulmonary tuberculosis cases: factors influencing the site of reactivation. Int J Tuberc Lung Dis, 9(11): 1220–1223

    CAS  PubMed  Google Scholar 

  • Nathan C, Shiloh M U (2000). Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA, 97(16): 8841–8848

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nursyam E W, Amin Z, Rumende C M (2006). The effect of vitamin D as supplementary treatment in patients with moderately advanced pulmonary tuberculous lesion. Acta Med Indones, 38(1): 3–5

    PubMed  Google Scholar 

  • Peters W, Ernst J D (2003). Mechanisms of cell recruitment in the immune response to Mycobacterium tuberculosis. Microbes Infect, 5(2): 151–158

    CAS  PubMed  Google Scholar 

  • Pethe K, Alonso S, Biet F, Delogu G, Brennan M J, Locht C, Menozzi F D (2001). The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature, 412(6843): 190–194

    CAS  PubMed  Google Scholar 

  • Pitchenik A E, Fertel D, Bloch A B (1988). Mycobacterial disease: epidemiology, diagnosis, treatment, and prevention. Clin Chest Med, 9(3): 425–441

    CAS  PubMed  Google Scholar 

  • Raviglione M C, Narain J P, Kochi A (1992). HIV-associated tuberculosis in developing countries: clinical features, diagnosis, and treatment. Bull World Health Organ, 70(4): 515–526

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reed M B, Domenech P, Manca C, Su H, Barczak A K, Kreiswirth B N, Kaplan G, Barry C E 3rd (2004). A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature, 431(7004): 84–87

    CAS  PubMed  Google Scholar 

  • Rengarajan J, Bloom B R, Rubin E J (2005). Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci USA, 102(23): 8327–8332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rieder H L, Snider D E Jr, Cauthen G M (1990). Extrapulmonary tuberculosis in the United States. Am Rev Respir Dis, 141(2): 347–351

    CAS  PubMed  Google Scholar 

  • Rook G A, Hernandez-Pando R (1996). The pathogenesis of tuberculosis. Annu Rev Microbiol, 50(1): 259–284

    CAS  PubMed  Google Scholar 

  • Sassetti C M, Rubin E J (2003). Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA, 100(22): 12989–12994

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan J A, Monahan IM, Dolganov G, Efron B, Butcher P D, Nathan C, Schoolnik G K (2003). Transcriptional adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the phagosomal environment. J Exp Med, 198(5): 693–704

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shafer R W, Kim D S, Weiss J P, Quale J M (1991). Extrapulmonary tuberculosis in patients with human immunodeficiency virus infection. Medicine (Baltimore), 70(6): 384–397

    CAS  Google Scholar 

  • Shiloh M U, Nathan C F (2000). Reactive nitrogen intermediates and the pathogenesis of Salmonella and Mycobacteria. Curr Opin Microbiol, 3(1): 35–42

    CAS  PubMed  Google Scholar 

  • Sita-Lumsden A, Lapthorn G, Swaminathan R, Milburn H J (2007). Reactivation of tuberculosis and vitamin D deficiency: the contribution of diet and exposure to sunlight. Thorax, 62(11): 1003–1007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sly L M, Hingley-Wilson S M, Reiner N E, McMaster W R (2003). Survival of Mycobacterium tuberculosis in host macrophages involves resistance to apoptosis dependent upon induction of antiapoptotic Bcl-2 family member Mcl-1. J Immunol, 170(1): 430–437

    CAS  PubMed  Google Scholar 

  • Snider D E Jr, Roper W L (1992). The new tuberculosis. N Engl J Med, 326(10): 703–705

    PubMed  Google Scholar 

  • Sohn H, Kim J S, Shin S J, Kim K, Won C J, Kim WS, Min K N, Choi H G, Lee J C, Park J K, Kim H J (2011). Targeting of Mycobacterium tuberculosis heparin-binding hemagglutinin to mitochondria in macrophages. PLoS Pathog, 7(12): e1002435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sreeramareddy C T, Panduru K V, Verma S C, Joshi H S, Bates M N (2008). Comparison of pulmonary and extrapulmonary tuberculosis in Nepal- a hospital-based retrospective study. BMC Infect Dis, 8(1): 8

    PubMed Central  PubMed  Google Scholar 

  • Sudre P, ten Dam G, Kochi A (1992). Tuberculosis: a global overview of the situation today. Bull World Health Organ, 70(2): 149–159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tascon R E, Soares C S, Ragno S, Stavropoulos E, Hirst EM, Colston M J (2000). Mycobacterium tuberculosis-activated dendritic cells induce protective immunity in mice. Immunology, 99(3): 473–480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Theuer C P, Hopewell P C, Elias D, Schecter G F, Rutherford G W, Chaisson R E (1990). Human immunodeficiency virus infection in tuberculosis patients. J Infect Dis, 162(1): 8–12

    CAS  PubMed  Google Scholar 

  • Thuong N T, Hawn T R, Thwaites G E, Chau T T, Lan N T, Quy H T, Hieu N T, Aderem A, Hien T T, Farrar J J, Dunstan S J (2007). A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis. Genes Immun, 8(5): 422–428

    CAS  PubMed  Google Scholar 

  • Tsenova L, Ellison E, Harbacheuski R, Moreira A L, Kurepina N, Reed M B, Mathema B, Barry C E 3rd, Kaplan G (2005). Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli. J Infect Dis, 192(1): 98–106

    PubMed  Google Scholar 

  • van Pinxteren L A, Cassidy J P, Smedegaard B H, Agger E M, Andersen P (2000). Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur J Immunol, 30(12): 3689–3698

    PubMed  Google Scholar 

  • Verway M, Bouttier M, Wang T T, Carrier M, Calderon M, An B S, Devemy E, McIntosh F, Divangahi M, Behr M A, White J H (2013). Vitamin D induces interleukin-1β expression: paracrine macrophage epithelial signaling controls M. tuberculosis infection. PLoS Pathog, 9(6): e1003407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang T T, Nestel F P, Bourdeau V, Nagai Y, Wang Q, Liao J, Tavera-Mendoza L, Lin R, Hanrahan J W, Mader S, White J H (2004). Cutting edge: 1, 25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol, 173(5): 2909–2912

    CAS  PubMed  Google Scholar 

  • Weir M R, Thornton G F (1985). Extrapulmonary tuberculosis. Experience of a community hospital and review of the literature. Am J Med, 79(4): 467–478

    CAS  PubMed  Google Scholar 

  • WHO (2014). Global tuberculosis control 2013.

    Google Scholar 

  • Wilkinson R J, Llewelyn M, Toossi Z, Patel P, Pasvol G, Lalvani A, Wright D, Latif M, Davidson R N (2000). Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case-control study. Lancet, 355(9204): 618–621

    CAS  PubMed  Google Scholar 

  • Wilkinson R J, Patel P, Llewelyn M, Hirsch C S, Pasvol G, Snounou G, Davidson R N, Toossi Z (1999). Influence of polymorphism in the genes for the interleukin (IL)-1 receptor antagonist and IL-1beta on tuberculosis. J Exp Med, 189(12): 1863–1874

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolf A J, Linas B, Trevejo-Nuñez G J, Kincaid E, Tamura T, Takatsu K, Ernst J D (2007). Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J Immunol, 179(4): 2509–2519

    CAS  PubMed  Google Scholar 

  • Yang Z, Kong Y, Wilson F, Foxman B, Fowler A H, Marrs C F, Cave M D, Bates J H (2004). Identification of risk factors for extrapulmonary tuberculosis. Clin Infect Dis, 38(2): 199–205

    PubMed  Google Scholar 

  • Zhang X, Andersen A B, Lillebaek T, Kamper-Jørgensen Z, Thomsen V O, Ladefoged K, Marrs C F, Zhang L, Yang Z (2011). Effect of sex, age, and race on the clinical presentation of tuberculosis: a 15-year population-based study. Am J Trop Med Hyg, 85(2): 285–290

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Kong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Kong, Y. The bacterial and host factors associated with extrapulmonary dissemination of Mycobacterium tuberculosis . Front. Biol. 10, 252–261 (2015). https://doi.org/10.1007/s11515-015-1358-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-015-1358-y

Keywords

Navigation