Skip to main content
Log in

Screening and molecular characterization of Serratia marcescens VITSD2: A strain producing optimum serratiopeptidase

  • Research Article
  • Published:
Frontiers in Biology

Abstract

The current work was attempted to isolate and characterize the serratiopeptidase producing Serratia sp. Among the 10 bacterial isolates 7 strains were identified as Serratia sp. Out of 7 strains one showed potent proteolytic activity and selected for further studies. Based on the morphological, biochemical and molecular characterization, the potent isolate (RH03) was identified as Serratia marcescens (GenBank accession number: KC961637) and the strain was designated as Serratia marcescens VITSD2. The production of serratiopeptidase was carried out in trypticase soya broth and the enzyme was partially purified using ammonium sulfate precipitation and dialysis. The specific activity was determined by casein hydrolysis assay and was found to be 12.00, 21.33, and 25.40 units/mg for crude, precipitated and dialysed samples. The molecular weight of the protease was determined by SDS-PAGE and it was found to be 50 kDa. The antibacterial activity of the produced serratiopeptidase showed moderate activity against Pseudomonas aeruginosa MTCC No. 4676 (12 mm) and Escherichia coli MTCC No. 1588 (15 mm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiyappa P S, Harris J O (1976). The extracellular metalloprotease of Serratia marcescens: I. Purification and characterization. Mol Cell Biochem, 13(2): 95–100

    Article  PubMed  CAS  Google Scholar 

  • Altschul S F, Gish W, Miller W, Myers E W, Lipman D J (1990). Basic local alignment search tool. J Mol Biol, 215(3): 403–410

    PubMed  CAS  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson T J, Higgins D G, Thompson J D (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res, 31(13): 3497–3500

    Article  PubMed  CAS  Google Scholar 

  • Decedue C J, Broussard E A N 2nd, Larson A D, Braymer H D (1979). Purification and characterization of the extracellular proteinase of Serratia marcescens. Biochim Biophys Acta, 569(2): 293–301

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Lawrence C E (2003). A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res, 31(24): 7280–7301

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4): 783–791

    Article  Google Scholar 

  • Grimont P A D, Grimont F, Dulong de Rosnay H L C (1977). Characterization of Serratia marcescens, S. liquefaciens, S. plymuthica and S. marinoruba by electrophoresis of their proteinases. J Gen Microbiol, 99(2): 301–310

    Article  CAS  Google Scholar 

  • Gruber A R, Lorenz R, Bernhart S H, Neuböck R, Hofacker I L (2008). The Vienna RNA websuite. Nucleic Acids Res, 36(Web Server issue): W70–74.

    Article  PubMed  CAS  Google Scholar 

  • Mohankumar A, Raj R H K, (2011). Production and characterization of Serratiopeptidase enzyme from Serratia marcescens. Int J Biol, 3(3)

    Google Scholar 

  • Holt J G (1994). Group 17 Gram-Positive Cocci: Bergey’s Manual of Determinative Bacteriology, ed 9th. Baltimore: William & Wilkins: 529–541

    Google Scholar 

  • Lowry O H, Rosebrough N J, Farr A L, Randall R J (1951). Protein measurement with the Folin phenol reagent. J Biol Chem, 193(1): 265–275

    PubMed  CAS  Google Scholar 

  • Machielsen R, Uria A R, Kengen S W M, van der Oost J (2006). Production and characterization of a thermostable alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily. Appl Environ Microbiol, 72(1): 233–238

    Article  PubMed  CAS  Google Scholar 

  • McCaskill J S (1990). The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers, 29(6–7): 1105–1119

    Article  PubMed  CAS  Google Scholar 

  • Miguel F, Carrascosa José R (2013). Serratia marcescens rhabdomyolysis. Adv Inf Diseases, 3(02): 63–64

    Article  Google Scholar 

  • Miyata K, Maejima K, Tomoda K, Isono M (1970). Serratia protease. Part I.Purification and general properties of the enzyme. Agric Biol Chem, 34(2): 310–318

    Article  CAS  Google Scholar 

  • Nakahama K, Yoshimura K, Marumoto R, Kikuchi M, Lee I S, Hase T, Matsubara H (1986). Cloning and sequencing of Serratia protease gene. Nucleic Acids Res, 14(14): 5843–5855

    Article  PubMed  CAS  Google Scholar 

  • Nirale N M, Menon M D (2010). Topical formulations of serratiopeptidase: development and pharmacodynamic evaluation. Indian J Pharm Sci, 72(1): 65–71

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 4(4): 406–425

    PubMed  CAS  Google Scholar 

  • Subbaiya R, Ayyappadasan G, Mythili S V, Dhivya E, Ponmurugan P (2011). Pilot scale microbial production and optimization of Serratia peptidase from Serratia marcescens. J Ecobiotechnol, 3(12): 10–13

    CAS  Google Scholar 

  • Trumbore MW, Rariy RV, Hirsh M, Hirsh J, Saunders JA (2005). Composition for topical enzymatic debridement. Collegium Pharmaceuticals, Inc, USPT application no. 20050281806-A1

    Google Scholar 

  • Valeria M D, Borin M F, Fonseca M J (2003). Topical formulation with superoxide dismutase: Influence of formulation composition on physical stability and enzymatic activity. J Pharm Biomed Anal, 3(32): 97–105

    Google Scholar 

  • Weissmann G (2006). Homeopathy: Holmes, Hogwarts, and the Prince of Wales. FASEB J, 20(11): 1755–1758

    Article  PubMed  CAS  Google Scholar 

  • Yourassowsky E, van der Linden M P, Lismont M J, Crokaert F (1989). Growth curve patterns of Escherichia coli, Serratia marcescens, and Proteus vulgaris submitted to different tigemonam concentrations. J Chemother, 1(Suppl 2): 49–53

    PubMed  Google Scholar 

  • Zuker M, Stiegler P (1981). Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res, 9(1): 133–148

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Subathra Devi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devi, C.S., Elizabeth Joseph, R., Saravanan, H. et al. Screening and molecular characterization of Serratia marcescens VITSD2: A strain producing optimum serratiopeptidase. Front. Biol. 8, 632–639 (2013). https://doi.org/10.1007/s11515-013-1284-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-013-1284-9

Keywords

Navigation