Skip to main content
Log in

Neural plasticity in high-level visual cortex underlying object perceptual learning

  • Review
  • Published:
Frontiers in Biology

Abstract

With intensive training, human can achieve impressive behavioral improvement on various perceptual tasks. This phenomenon, termed perceptual learning, has long been considered as a hallmark of the plasticity of sensory neural system. Not surprisingly, high-level vision, such as object perception, can also be improved by perceptual learning. Here we review recent psychophysical, electrophysiological, and neuroimaging studies investigating the effects of training on object selective cortex, such as monkey inferior temporal cortex and human lateral occipital area. Evidences show that learning leads to an increase in object selectivity at the single neuron level and/or the neuronal population level. These findings indicate that high-level visual cortex in humans is highly plastic and visual experience can strongly shape neural functions of these areas. At the end of the review, we discuss several important future directions in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews T J, Ewbank M P (2004). Distinct representations for facial identity and changeable aspects of faces in the human temporal lobe. Neuroimage, 23(3): 905–913

    Article  PubMed  Google Scholar 

  • Anstis S (2010). Stuart Anstis. Curr Biol, 20(18): R795–R796

    Article  PubMed  CAS  Google Scholar 

  • Baker C I, Behrmann M, Olson C R (2002). Impact of learning on representation of parts and wholes in monkey inferotemporal cortex. Nat Neurosci, 5(11): 1210–1216

    Article  PubMed  CAS  Google Scholar 

  • Baker C I, Liu J, Wald L L, Kwong K K, Benner T, Kanwisher N (2007). Visual word processing and experiential origins of functional selectivity in human extrastriate cortex. Proc Natl Acad Sci USA, 104(21): 9087–9092

    Article  PubMed  CAS  Google Scholar 

  • Ball K, Sekuler R (1987). Direction-specific improvement in motion discrimination. Vision Res, 27(6): 953–965

    Article  PubMed  CAS  Google Scholar 

  • Bao M, Yang L, Rios C, He B, Engel S A (2010). Perceptual learning increases the strength of the earliest signals in visual cortex. J Neurosci, 30(45): 15080–15084

    Article  PubMed  CAS  Google Scholar 

  • Bentin S, Allison T, Puce A, Perez E, McCarthy G (1996). Electrophysiological studies of face perception in humans. J Cogn Neurosci, 8(6): 551–565

    Article  PubMed  Google Scholar 

  • Bi T, Chen N, Weng Q, He D, Fang F (2010). Learning to discriminate face views. J Neurophysiol, 104(6): 3305–3311

    Article  PubMed  Google Scholar 

  • Blakemore C, Campbell FW(1969). On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J Physiol, 203(1): 237–260

    PubMed  CAS  Google Scholar 

  • Cox D D, DiCarlo J J (2008). Does learned shape selectivity in inferior temporal cortex automatically generalize across retinal position? J Neurosci, 28(40): 10045–10055

    Article  PubMed  CAS  Google Scholar 

  • De Baene W, Ons B, Wagemans J, Vogels R (2008). Effects of category learning on the stimulus selectivity of macaque inferior temporal neurons. Learn Mem, 15(9): 717–727

    Article  PubMed  Google Scholar 

  • De Souza W C, Eifuku S, Tamura R, Nishijo H, Ono T (2005). Differential characteristics of face neuron responses within the anterior superior temporal sulcus of macaques. J Neurophysiol, 94(2): 1252–1266

    Article  PubMed  Google Scholar 

  • Desimone R, Albright T D, Gross C G, Bruce C (1984). Stimulusselective properties of inferior temporal neurons in the macaque. J Neurosci, 4(8): 2051–2062

    PubMed  CAS  Google Scholar 

  • Dosher B A, Lu Z L (1998). Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proc Natl Acad Sci USA, 95(23): 13988–13993

    Article  PubMed  CAS  Google Scholar 

  • Dosher B A, Lu Z L (2005). Perceptual learning in clear displays optimizes perceptual expertise: learning the limiting process. Proc Natl Acad Sci USA, 102(14): 5286–5290

    Article  PubMed  CAS  Google Scholar 

  • Engvig A, Fjell AM, Westlye L T, Moberget T, Sundseth O, Larsen V A, Walhovd K B (2010). Effects of memory training on cortical thickness in the elderly. Neuroimage, 52(4): 1667–1676

    Article  PubMed  Google Scholar 

  • Fang F, Murray S O, He S (2007). Duration-dependent FMRI adaptation and distributed viewer-centered face representation in human visual cortex. Cereb Cortex, 17(6): 1402–1411

    Article  PubMed  Google Scholar 

  • Fang F, Murray S O, Kersten D, He S (2005). Orientation-tuned FMRI adaptation in human visual cortex. J Neurophysiol, 94(6): 4188–4195

    Article  PubMed  Google Scholar 

  • Folstein J R, Palmeri T J, Gauthier I (2012). Category learning increases discriminability of relevant object dimensions in visual cortex. Cereb Cortex, 23(4): 814–823

    Article  PubMed  Google Scholar 

  • Freedman D J, Riesenhuber M, Poggio T, Miller E K (2006). Experience-dependent sharpening of visual shape selectivity in inferior temporal cortex. Cereb Cortex, 16(11): 1631–1644

    Article  PubMed  Google Scholar 

  • Furmanski C S, Engel S A (2000). Perceptual learning in object recognition: object specificity and size invariance. Vision Res, 40(5): 473–484

    Article  PubMed  CAS  Google Scholar 

  • Furmanski C S, Schluppeck D, Engel S A (2004). Learning strengthens the response of primary visual cortex to simple patterns. Curr Biol, 14(7): 573–578

    Article  PubMed  CAS  Google Scholar 

  • Gauthier I, Skudlarski P, Gore J C, Anderson A W (2000). Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci, 3(2): 191–197

    Article  PubMed  CAS  Google Scholar 

  • Gauthier I, Tarr M J (1997). Becoming a “Greeble” expert: exploring mechanisms for face recognition. Vision Res, 37(12): 1673–1682

    Article  PubMed  CAS  Google Scholar 

  • Gilbert C D, Sigman M, Crist R E (2001). The neural basis of perceptual learning. Neuron, 31(5): 681–697

    Article  PubMed  CAS  Google Scholar 

  • Gillebert C R, Op de Beeck H P, Panis S, Wagemans J (2009). Subordinate categorization enhances the neural selectivity in human object-selective cortex for fine shape differences. J Cogn Neurosci, 21(6): 1054–1064

    Article  PubMed  Google Scholar 

  • Gold J, Bennett P J, Sekuler A B (1999). Signal but not noise changes with perceptual learning. Nature, 402(6758): 176–178

    Article  PubMed  CAS  Google Scholar 

  • Goldstone R L, Lippa Y, Shiffrin R M (2001). Altering object representations through category learning. Cognition, 78(1): 27–43

    Article  PubMed  CAS  Google Scholar 

  • Grill-Spector K, Henson R, Martin A (2006). Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn Sci, 10(1): 14–23

    Article  PubMed  Google Scholar 

  • Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R (1999). Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron, 24(1): 187–203

    Article  PubMed  CAS  Google Scholar 

  • Grill-Spector K, Kushnir T, Hendler T, Malach R (2000). The dynamics of object-selective activation correlate with recognition performance in humans. Nat Neurosci, 3(8): 837–843

    Article  PubMed  CAS  Google Scholar 

  • Grill-Spector K, Malach R (2001). fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol (Amst), 107(1–3): 293–321

    Article  CAS  Google Scholar 

  • Gross C G (1992). Representation of visual stimuli in inferior temporal cortex. Philos Trans R Soc Lond Ser B-Biol Sci, 335: 3–10

    Article  CAS  Google Scholar 

  • Harley E M, Pope W B, Villablanca J P, Mumford J, Suh R, Mazziotta J C, Enzmann D, Engel S A (2009). Engagement of fusiform cortex and disengagement of lateral occipital cortex in the acquisition of radiological expertise. Cereb Cortex, 19(11): 2746–2754

    Article  PubMed  Google Scholar 

  • Hubel D H, Wiesel T N (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol, 206(2): 419–436

    PubMed  CAS  Google Scholar 

  • Hussain Z, Sekuler A B, Bennett P J (2008). Robust perceptual learning of faces in the absence of sleep. Vision Res, 48(28): 2785–2792

    Article  PubMed  Google Scholar 

  • Jeffreys D A (1996). Evoked potential studies of face and object processing. Vis Cogn, 3(1): 1–38

    Article  Google Scholar 

  • Jiang X, Bradley E, Rini R A, Zeffiro T, Vanmeter J, Riesenhuber M (2007). Categorization training results in shape- and categoryselective human neural plasticity. Neuron, 53(6): 891–903

    Article  PubMed  CAS  Google Scholar 

  • Kaas J H, Krubitzer L A, Chino YM, Langston A L, Polley E H, Blair N (1990). Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science, 248(4952): 229–231

    Article  PubMed  CAS  Google Scholar 

  • Kahnt T, Grueschow M, Speck O, Haynes J D (2011). Perceptual learning and decision-making in human medial frontal cortex. Neuron, 70(3): 549–559

    Article  PubMed  CAS  Google Scholar 

  • Karni A, Sagi D (1993). The time course of learning a visual skill. Nature, 365(6443): 250–252

    Article  PubMed  CAS  Google Scholar 

  • Law C T, Gold J I (2008). Neural correlates of perceptual learning in a sensory-motor, but not a sensory, cortical area. Nat Neurosci, 11(4): 505–513

    Article  PubMed  CAS  Google Scholar 

  • Ma L S, Wang B Q, Narayana S, Hazeltine E, Chen X Y, Robin D A, Fox P T, Xiong J H (2010). Changes in regional activity are accompanied with changes in inter-regional connectivity during 4 weeks motor learning. Brain Res, 1318: 64–76

    Article  PubMed  CAS  Google Scholar 

  • Mollon J D, Danilova M V (1996). Three remarks on perceptual learning. Spat Vis, 10(1): 51–58

    Article  PubMed  CAS  Google Scholar 

  • Moore C D, Cohen M X, Ranganath C (2006). Neural mechanisms of expert skills in visual working memory. J Neurosci, 26(43): 11187–11196

    Article  PubMed  CAS  Google Scholar 

  • Mukai I, Kim D, Fukunaga M, Japee S, Marrett S, Ungerleider L G (2007). Activations in visual and attention-related areas predict and correlate with the degree of perceptual learning. J Neurosci, 27(42): 11401–11411

    Article  PubMed  CAS  Google Scholar 

  • Op de Beeck H, Wagemans J, Vogels R (2003). The effect of category learning on the representation of shape: dimensions can be biased but not differentiated. J Exp Psychol Gen, 132(4): 491–511

    Article  PubMed  Google Scholar 

  • Op de Beeck H P, Wagemans J, Vogels R (2007). Effects of perceptual learning in visual backward masking on the responses of macaque inferior temporal neurons. Neuroscience, 145(2): 775–789

    Article  PubMed  CAS  Google Scholar 

  • Peissig J J, Singer J, Kawasaki K, Sheinberg D L (2007). Effects of longterm object familiarity on event-related potentials in the monkey. Cereb Cortex, 17(6): 1323–1334

    Article  PubMed  Google Scholar 

  • Perrett D I, Smith P A J, Potter D D, Mistlin A J, Head A S, Milner A D, Jeeves M A(1985). Visual cells in the temporal cortex sensitive to face view and gaze direction. P Roy Soc B-Biol Sci, 223: 293–317

    Article  CAS  Google Scholar 

  • Rainer G, Lee H, Logothetis N K (2004). The effects of learning on the function of monkey extrastriate visual cortex. PLoS Biol, 2(2): 275–283

    Article  Google Scholar 

  • Rossion B, Gauthier I, Goffaux V, Tarr M J, Crommelinck M (2002). Expertise training with novel objects leads to left-lateralized facelike electrophysiological responses. Psychol Sci, 13(3): 250–257

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Miyashita Y (1994). Neuronal tuning to learned complex forms in vision. Neuroreport, 5(7): 829–832

    Article  PubMed  CAS  Google Scholar 

  • Scholz J, Klein M C, Behrens T E J, Johansen-Berg H (2009). Training induces changes in white-matter architecture. Nat Neurosci, 12(11): 1370–1371

    Article  PubMed  CAS  Google Scholar 

  • Schoups A, Vogels R, Qian N, Orban G (2001). Practising orientation identification improves orientation coding in V1 neurons. Nature, 412(6846): 549–553

    Article  PubMed  CAS  Google Scholar 

  • Schoups A A, Vogels R, Orban G A (1995). Human perceptual learning in identifying the oblique orientation: retinotopy, orientation specificity and monocularity. J Physiol, 483(Pt 3): 797–810

    PubMed  CAS  Google Scholar 

  • Schwartz S, Maquet P, Frith C (2002). Neural correlates of perceptual learning: a functional MRI study of visual texture discrimination. Proc Natl Acad Sci USA, 99(26): 17137–17142

    Article  PubMed  CAS  Google Scholar 

  • Scott L S, Tanaka J W, Sheinberg D L, Curran T (2008). The role of category learning in the acquisition and retention of perceptual expertise: a behavioral and neurophysiological study. Brain Res, 1210: 204–215

    Article  PubMed  CAS  Google Scholar 

  • Sigala N, Logothetis N K (2002). Visual categorization shapes feature selectivity in the primate temporal cortex. Nature, 415(6869): 318–320

    Article  PubMed  CAS  Google Scholar 

  • Sigman M, Gilbert C D (2000). Learning to find a shape. Nat Neurosci, 3(3): 264–269

    Article  PubMed  CAS  Google Scholar 

  • Sigman M, Pan H, Yang Y H, Stern E, Silbersweig D, Gilbert C D (2005). Top-down reorganization of activity in the visual pathway after learning a shape identification task. Neuron, 46(5): 823–835

    Article  PubMed  CAS  Google Scholar 

  • Song Y Y, Hu S Y, Li X T, Li W, Liu J (2010). The role of top-down task context in learning to perceive objects. J Neurosci, 30(29): 9869–9876

    Article  PubMed  CAS  Google Scholar 

  • Su J Z, Chen C, He D J, Fang F (2012). Effects of face view discrimination learning on N170 latency and amplitude. Vision Res, 61: 125–131

    Article  PubMed  Google Scholar 

  • van der Linden M, Murre J M J, van Turennout M (2008). Birds of a feather flock together: experience-driven formation of visual object categories in human ventral temporal cortex. PLoS ONE, 3(12): e3995

    Article  PubMed  Google Scholar 

  • Woloszyn L, Sheinberg D L (2012). Effects of long-term visual experience on responses of distinct classes of single units in inferior temporal cortex. Neuron, 74(1): 193–205

    Article  PubMed  CAS  Google Scholar 

  • Wong Y K, Folstein J R, Gauthier I (2012). The nature of experience determines object representations in the visual system. J Exp Psychol Gen, 141(4): 682–698

    Article  PubMed  Google Scholar 

  • Xiao L Q, Zhang J Y, Wang R, Klein S A, Levi D M, Yu C (2008). Complete transfer of perceptual learning across retinal locations enabled by double training. Curr Biol, 18(24): 1922–1926

    Article  PubMed  CAS  Google Scholar 

  • Xu Y D (2005). Revisiting the role of the fusiform face area in visual expertise. Cereb Cortex, 15(8): 1234–1242

    Article  PubMed  Google Scholar 

  • Yotsumoto Y, Watanabe T, Sasaki Y (2008). Different dynamics of performance and brain activation in the time course of perceptual learning. Neuron, 57(6): 827–833

    Article  PubMed  CAS  Google Scholar 

  • Yu C, Klein S A, Levi D M (2004). Perceptual learning in contrast discrimination and the (minimal) role of context. J Vis, 4(3): 169–182

    Article  PubMed  Google Scholar 

  • Zatorre R J, Fields R D, Johansen-Berg H (2012). Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci, 15(4): 528–536

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiyong Bi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, T., Fang, F. Neural plasticity in high-level visual cortex underlying object perceptual learning. Front. Biol. 8, 434–443 (2013). https://doi.org/10.1007/s11515-013-1262-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-013-1262-2

Keywords

Navigation