Skip to main content
Log in

Increasing the Bioaccessibility of Antioxidants in Tomato Pomace Using Excipient Emulsions

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Plant-based foods contain numerous bioactive constituents (“nutraceuticals”) that have beneficial effects on human health. However, their oral bioavailability is often relatively low, which limits their potential efficacy. The bioavailability of nutraceuticals can be increased through the utilization of excipient foods whose compositions and structures are specifically designed to increase the amount of nutraceuticals absorbed in an active form. In this study, olive oil excipient emulsions were designed to increase the bioaccessibility of lycopene and other natural antioxidants in tomato pomace. These emulsions consisted of 8 wt% olive oil and 1 wt% Tween 20 or Tween 80 and were prepared using a microfluidizer operated under different processing conditions (12,000 or 20,000 psi; 3 or 5 passes). Changes in particle size, charge, and bioaccessibility were assessed when tomato pomace-emulsion mixtures were exposed to simulated gastrointestinal digestion. The mean particle diameter of the particles in the excipient emulsions increased after digestion (416 to 446 nm) compared to the values before digestion (200 to 220 nm). The presence of excipient emulsions significantly increased the bioaccessibility of lycopene in tomato pomace compared to oil-free control samples. For instance, lycopene bioaccessibility was > 82% when the tomato pomace was mixed with excipient emulsions but only 29% when it was mixed with oil-free buffer solutions. The presence of excipient emulsions also increased the total phenolic content of the tomato pomace. For instance, the phenolic content was considerably higher in the presence of excipient emulsions (1489 to 2055 mg GAE /100 g FW) than in their absence (939 mg GAE /100 g FW). However, the excipient emulsions did not increase naringenin bioaccessibility, which was attributed to the fact that it was not strongly hydrophobic. The efficacy of the excipient emulsions was only modestly dependent on emulsifier type and homogenization conditions. In conclusion, excipient emulsions can be designed to enhance the bioaccessibility of strongly hydrophobic nutraceuticals in tomato-based products, which may boost their healthiness.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Q. Li, T. Li, C. Liu, J. Chen, R. Zhang, Z. Zhang, T. Dai, D.J. McClements, Food Res. Int. 89, 320 (2016)

    Article  CAS  Google Scholar 

  2. A. Zuorro, M. Fidaleo, R. Lavecchia, Enzyme Microb. Technol. 49, 567 (2011)

    Article  CAS  Google Scholar 

  3. L. Salvia-Trujillo, D.J. McClements, Food Chem. 210, 295 (2016)

    Article  CAS  Google Scholar 

  4. P. Palozza, A. Catalano, R.E. Simone, M.C. Mele, A. Cittadini, Ann. Nutr. Metab. 61, 126 (2012)

    Article  CAS  Google Scholar 

  5. R. Zhang, Z. Zhang, L. Zou, H. Xiao, G. Zhang, E.A. Decker, D.J. McClements, J. Agric. Food Chem. 63, 10508 (2015)

    Article  CAS  Google Scholar 

  6. X. Yuan, J. Xiao, X. Liu, D.J. McClements, Y. Cao, H. Xiao, Food Chem. 278, 811 (2019)

    Article  CAS  Google Scholar 

  7. X. Liu, J. Bi, H. Xiao, D.J. McClements, J. Food Sci. 81, N754 (2016)

    Article  CAS  Google Scholar 

  8. X. Yuan, X. Liu, D.J. McClements, Y. Cao, H. Xiao, Food Funct. 9, 4352 (2018)

    Article  CAS  Google Scholar 

  9. X. Liu, J. Bi, H. Xiao, D.J. McClements, J. Agric. Food Chem. 63, 8534 (2015)

    Article  CAS  Google Scholar 

  10. L. Zou, W. Liu, C. Liu, H. Xiao, D.J. McClements, Food Funct. 6, 2475 (2015)

    Article  CAS  Google Scholar 

  11. R. Zhang, D.J. McClements, Food Struct. 10, 21 (2016)

    Article  Google Scholar 

  12. R. Zhang, Z. Zhang, D.J. McClements, Colloids Surfaces B Biointerfaces 194, 111202 (2020)

    Article  CAS  Google Scholar 

  13. X. Chen, L. Zou, W. Liu, D.J. McClements, J. Agric. Food Chem. 64, 3653 (2016)

    Article  CAS  Google Scholar 

  14. J. Kim and S. J. Choi, Foods 9, (2020).

  15. E. Meroni, V. Raikos, Beverages 4, 14 (2018)

    Article  Google Scholar 

  16. K.R.N. Moelants, R. Cardinaels, R.P. Jolie, T.A.J. Verrijssen, S. Van Buggenhout, L.M. Zumalacarregui, A.M. Van Loey, P. Moldenaers, M.E. Hendrickx, Food Bioprocess Technol. 6, 1127 (2013)

    Article  CAS  Google Scholar 

  17. I.F. Strati, V. Oreopoulou, Food Chem. 129, 747 (2011)

    Article  CAS  Google Scholar 

  18. I.F. Strati, V. Oreopoulou, Food Res. Int. 65, 311 (2014)

    Article  CAS  Google Scholar 

  19. E. Capanoglu, J. Beekwilder, D. Boyacioglu, R. Hall, R. de Vos, J. Agric. Food Chem. 56, 964 (2008)

    Article  CAS  Google Scholar 

  20. M. Minekus, M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carrì, R. Boutrou, M. Corredig, D. Dupont, C. Dufour, L. Egger, M. Golding, L. S. Karakaya, B. Kirkhus, S. Le Feunteun, U. Lesmes, A. Macierzanka, A. Mackie, S. Marze, D. J. Mcclements, I. Recio, C. N. Santos, R. P. Singh, G. E. Vegarud, M. S. J. Wickham, W. Weitschies, A. Brodkorb, R. Doutor, and I. P. Jorge, Food Funct 5, (2014).

  21. V. L. Singleton and J. A. Rossi, Am. J. Enol. Vitic. 16, 144 LP (1965).

  22. R. Apak, K. Güçlü, M. Özyürek, S.E. Karademir, J. Agric. Food Chem. 52, 7970 (2004)

    Article  CAS  Google Scholar 

  23. A. I. Olives Barba, M. Cámara Hurtado, M. C. Sánchez Mata, V. Fernández Ruiz, and M. López Sáenz De Tejada, Food Chem. 95, 328 (2006).

  24. M. Naczk, F. Shahidi, Prev. Nutr. Food Sci. 8, 200 (2003)

    Article  CAS  Google Scholar 

  25. J. Bouayed, L. Hoffmann, T. Bohn, Food Chem. 128, 14 (2011)

    Article  CAS  Google Scholar 

  26. B. Horasan Sağbasan, Investigating The Bioaccesibility of Antioxidants in Red Fruits Commonly Consumed In Turkey, Istanbul Technical University, 2015.

  27. L. Miranda, H. Deußer, D. Evers, Food Funct. 4, 1595 (2013)

    Article  CAS  Google Scholar 

  28. A. Serra, A. Macià, M.-P. Romero, J. Valls, C. Bladé, L. Arola, M.-J. Motilva, Br. J. Nutr. 103, 944 (2010)

    Article  CAS  Google Scholar 

  29. X. Chen, D.J. McClements, Y. Zhu, Y. Chen, L. Zou, W. Liu, C. Cheng, D. Fu, C. Liu, Food Res. Int. 114, 30 (2018)

    Article  CAS  Google Scholar 

  30. A.F. Vinha, R.C. Alves, S.V.P. Barreira, A. Castro, A.S.G. Costa, M.B.P.P. Oliveira, LWT - Food Sci. Technol. 55, 197 (2014)

    Article  CAS  Google Scholar 

  31. Y. Wang, S. Wang, C.K. Firempong, H. Zhang, M. Wang, Y. Zhang, Y. Zhu, J. Yu, X. Xu, AAPS PharmSciTech 18, 586 (2017)

    Article  Google Scholar 

  32. I.S. Song, J.S. Cha, M.K. Choi, J. Pharm. Investig. 45, 633 (2015)

    Article  CAS  Google Scholar 

  33. S. Gera, S. Talluri, N. Rangaraj, S. Sampathi, AAPS PharmSciTech 18, 3151 (2017)

    Article  CAS  Google Scholar 

  34. Q. Li, T. Li, C. Liu, T. Dai, R. Zhang, Z. Zhang, D.J. McClemnets, Food Biophys. 12, 172 (2017)

    Article  Google Scholar 

  35. S. Przybylska, Int. J. Food Sci. Technol. 55, 11 (2020)

    Article  CAS  Google Scholar 

  36. D.J. McClements, L. Zou, R. Zhang, L. Salvia-Trujillo, T. Kumosani, H. Xiao, Compr. Rev. Food Sci. Food Saf. 14, 824 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by a grant from TÜBİTAK 3501 Program (Grant No. 118O377; The Scientific and Technological Research Council of Turkey).

Author information

Authors and Affiliations

Authors

Contributions

Elifsu Nemli: Methodology, Formal analysis, Investigation, Writing—Original Draft, Visualization. Sinem Ozakdogan: Methodology, Formal analysis, Investigation, Writing—Original Draft, Visualization. Merve Tomas: Conceptualization, Methodology, Formal analysis, Investigation, Writing—Review & Editing, Project administration. David Julian McClements: Writing—Review & Editing. Esra Capanoglu: Conceptualization, Methodology, Formal analysis, Investigation, Writing—Original Draft, Writing—Review & Editing, Supervision, Project administration.

Corresponding authors

Correspondence to Merve Tomas or Esra Capanoglu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Tomato pomace (waste) was processed with an excipient emulsion.

• An in vitro digestion model was used to measure carotenoid bioaccessibility

• The excipient emulsion increased lycopene bioaccessibility.

• Excipient emulsions may improve health benefits of nutraceuticals in plant foods.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemli, E., Ozakdogan, S., Tomas, M. et al. Increasing the Bioaccessibility of Antioxidants in Tomato Pomace Using Excipient Emulsions. Food Biophysics 16, 355–364 (2021). https://doi.org/10.1007/s11483-021-09674-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-021-09674-y

Keywords

Navigation