Skip to main content
Log in

Characterization of Core-Shell Alginate Capsules

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

A new droplets millifluidic/inverse gelation based process was used to produce core-shell alginate milli-capsules. Water-in-oil (W/O) emulsion dispersed phase containing Ca2+ ions was directly injected into a continuous alginate phase to generate a secondary W/O/W emulsion. Due to the cross-linking of alginate molecules by Ca2+ ions release, core-shell milli-capsules were formed with a very high oil loading. The influence of the curing time and of the storage conditions on capsules physico-chemical properties were investigated. It was first found as expected that alginate membrane thickness increased with curing time in the collecting bath. However, a plateau was reached for the higher curing times, in close relation with previous observations (Martins, Poncelet, Marquis, Davy, & Renard, 2017b) that an external oil layer surrounded the surface of W/O emulsion drops that acted as a barrier and hindered the release of aqueous CaCl2 droplets during curing time. Compression experiments on individual capsules revealed that alginate membrane thickness was inversely related to its mechanical properties, i.e. the thicker membrane, the lower surface Young modulus. Surface Young modulus ranged from 61 to 26 N/m at curing times of 3 and 45 min, respectively. This result was explained in terms of enhanced swelling properties of alginate membrane with curing time or storage conditions. Drying capsules led to much more resistant membranes due to the loss of water. Oil loading of 80 wt% was obtained for dry capsules whatever the conditions used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Lupo, A. Maestro, M. Porras, J.M. Gutiérrez, C. González, Preparation of alginate microspheres by emulsification/internal gelation to encapsulate cocoa polyphenols. Food Hydrocoll. 38, 56–65 (2014)

    Article  CAS  Google Scholar 

  2. E. Martins, D. Renard, J. Davy, M. Marquis, D. Poncelet, Oil core microcapsules by inverse gelation technique. J. Microencapsul. 32(1), 86–95 (2015)

    Article  CAS  Google Scholar 

  3. S.J. Risch, G.A.A. Reineccius, Flavor Encapsulation, ACS SymposiumSeries 370 (American Chemical Society, Washington, DC, 1988)

    Book  Google Scholar 

  4. M. Jin, Y. Zheng, Q. Hu, Preparation and characterization of bovine serum albumin alginate/chitosan microspheres for oral administration. Asian J. Pharm. Sci. 4(4), 215–220 (2009)

    Google Scholar 

  5. K. Ziani, Y. Fang, D.J. McClements, Encapsulation of functional lipophilic components in surfactant-based colloidal delivery systems: vitamin E, vitamin D, and lemon oil. Food Chem. 134(2), 1106–1112 (2012)

    Article  CAS  Google Scholar 

  6. C. Ouwerx, N. Velings, M.M. Mestdagh, M.A.V. Axelos, Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polymer Gels and Networks 6(5), 393–408 (1998)

    Article  CAS  Google Scholar 

  7. D. Poncelet, V. Babak, C. Dulieu, A. Picot, A physico-chemical approach to production of alginate beads by emulsification-internal ionotropic gelation. Colloids Surf. A Physicochem. Eng. Asp. 155(2–3), 171–176 (1999)

    Article  CAS  Google Scholar 

  8. D. Quong, R.J. Neufeld, G. Skjåk-Bræk, D. Poncelet, External versus internal source of calcium during the gelation of alginate beads for DNA encapsulation. Biotechnol. Bioeng. 57(4), 438–446 (1998)

    Article  CAS  Google Scholar 

  9. S. Abang, E.S. Chan, D. Poncelet, Effects of process variables on the encapsulation of oil in ca-alginate capsules using an inverse gelation technique. J. Microencapsul. 29(5), 417–428 (2012)

    Article  CAS  Google Scholar 

  10. E. Martins, D. Poncelet, D. Renard, A novel method of oil encapsulation in core-shell alginate microcapsules by dispersion-inverse gelation technique. React. Funct. Polym. 114, 49–57 (2017a)

    Article  CAS  Google Scholar 

  11. E. Martins, D. Poncelet, M. Marquis, J. Davy, D. Renard, Monodisperse core-shell alginate (micro)-capsules with oil core generated from droplets millifluidic. Food Hydrocoll. 63, 447–456 (2017b)

    Article  CAS  Google Scholar 

  12. J.-Y. Wang, Y. Jin, R. Xie, J.-Y. Liu, X.-J. Ju, T. Meng, L.-Y. Chu, Novel calcium-alginate capsules with aqueous core and thermo-responsive membrane. J. Colloid Interface Sci. 353, 61–68 (2011)

    Article  CAS  Google Scholar 

  13. A. Schmit, L. Courbin, M. Marquis, D. Renard, P. Panizza, A pendant drop method for the production of calibrated double emulsions and emulsion gels. Rsc Advances 4(54), 28,504–28,510 (2014)

    Article  CAS  Google Scholar 

  14. M. Rachik, D. Barthes-Biesel, M. Carin, F. Edwards-Levy, Identification of the elastic properties of an artificial capsule membrane with the compression test: effect of thickness. J. Colloid Interface Sci. 301(1), 217–226 (2006)

    Article  CAS  Google Scholar 

  15. A. Fery, R. Weinkamer, Mechanical properties of micro-and nanocapsules: Single-capsule measurements. Polymer 48(25), 7221–7235 (2007)

    Article  CAS  Google Scholar 

  16. A.M. Al-Sabagh, The relevance HLB of surfactants on the stability of asphalt emulsion. Colloids Surf. A Physicochem. Eng. Asp. 204(1–3), 73–83 (2002)

    Article  CAS  Google Scholar 

  17. A.L. Márquez, A. Medrano, L.A. Panizzolo, J.R. Wagner, Effect of calcium salts and surfactant concentration on the stability of water-in-oil (w/o) emulsions prepared with polyglycerol polyricinoleate. J. Colloid Interface Sci. 341(1), 101–108 (2010)

    Article  Google Scholar 

  18. J.H. Su, J. Flanagan, Y. Hemar, H. Singh, Synergistic effects of polyglycerol ester of polyricinoleic acid and sodium caseinate on the stabilisation of water-oil-water emulsions. Food Hydrocoll. 20(2–3), 261–268 (2006)

    Article  CAS  Google Scholar 

  19. K.S. Karunadasa, C.H. Manoratne, H.M.T.G.A. Pitawala, R.M.G. Rajapakse, Relative stability of hydrated/anhydrous products of calcium chloride during complete dehydration as examined by high-temperature X-ray powder diffraction. J. Phys. Chem. Solids 120, 167–172 (2018)

    Article  CAS  Google Scholar 

  20. A. Souza, J.C. Santos, M.M. Conceição, M.C. Silva, S. Prasad, A thermoanalytic and kinetic study of sunflower oil. Braz. J. Chem. Eng. 21(2), 265–273 (2004)

    Article  Google Scholar 

  21. Zhao, Y., Huang, Z., Zhang, J., Wu, W., Wang, M., & Fan, L. (2010). Thermal Degradation of Sodium Alginate-Incorporated Soy Protein Isolate/Glycerol Composite Membranes.

  22. J.P. Soares, J.E. Santos, G.O. Chierice, E.T.G. Cavalheiro, Thermal behavior of alginic acid and its sodium salt. Eclética Química 29(2), 57–64 (2004)

    Article  CAS  Google Scholar 

  23. A.K. Pawlik, Duplex emulsions for healthy foods (Doctoral dissertation, University of Birmingham, 2012)

    Google Scholar 

  24. A. Gray, S. Egan, S. Bakalis, Z. Zhang, Determination of microcapsule physicochemical, structural, and mechanical properties. Particuology 24, 32–43 (2016)

    Article  Google Scholar 

  25. S. Leick, S. Henning, P. Degen, D. Suter, H. Rehage, Deformation of liquid-filled calcium alginate capsules in a spinning drop apparatus. Phys. Chem. Chem. Phys. 12(12), 2950–2958 (2010)

    Article  CAS  Google Scholar 

  26. A. Blandino, M. Macias, D. Cantero, Formation of calcium alginate gel capsules: influence of sodium alginate and CaCl2 concentration on gelation kinetics. J. Biosci. Bioeng. 88(6), 686–689 (1999)

    Article  CAS  Google Scholar 

  27. E. Martins, D. Poncelet, C.R. Ramires, D. Renard, Oil encapsulation techniques using alginate as encapsulating agent: Applications and drawbacks. J. Microencapsul. 34(8), 754–771 (2017c)

    Article  CAS  Google Scholar 

  28. M. Briššová, I. Lacík, A.C. Powers, A.V. Anilkumar, T. Wang, Control and measurement of permeability for design of microcapsule cell delivery system. J. Biomed. Mater. Res. 39(1), 61–70 (1998)

    Article  Google Scholar 

  29. M.P. Neubauer, M. Poehlmann, A. Fery, Microcapsule mechanics: From stability to function. Adv. Colloid Interf. Sci. 207, 65–80 (2014)

    Article  CAS  Google Scholar 

  30. E.S. Chan, T.K. Lim, W.P. Voo, R. Pogaku, B.T. Tey, Z. Zhang, Effect of formulation of alginate beads on their mechanical behavior and stiffness. Particuology 9(3), 228–234 (2011)

    Article  CAS  Google Scholar 

  31. Z. Marcadé-Prieto, Zhang. Mechanical characterization of microspheres - capsules, cells and microspheres: A review. J. Microencapsul. 29(3), 277–285 (2012)

    Article  Google Scholar 

  32. M. Lekka, D. Sainz-Serp, A.J. Kulik, C. Wandrey, Hydrogel Microspheres: Influence of Chemical Composition on Surface Morphology, Local Elastic Properties, and Bulk Mechanical Characteristics. Langmuir 20, 9968–9977 (2004)

    Article  CAS  Google Scholar 

  33. M. Carin, D. Barthès-Biesel, F. Edwards-Lévy, C. Postel, D.C. Andrei, Compression of biocompatible liquid-filled HSA-alginate capsules: Determination of the membrane mechanical properties. Biotechnol. Bioeng. 82(2), 207–212 (2003)

    Article  CAS  Google Scholar 

  34. M.W. Keller, N.R. Sottos, Mechanical properties of microcapsules used in a self-healing polymer. Exp. Mech. 46(6), 725–733 (2006)

    Article  CAS  Google Scholar 

  35. S. Leick, A. Kemper, H. Rehage, Alginate/poly-L-lysine capsules: mechanical properties and drug releasecharacteristics. Soft Matter 7, 6684–6694 (2011)

    Article  CAS  Google Scholar 

  36. G.B. Messaoud, L. Sánchez-González, A. Jacquot, L. Probst, S. Desobry, Alginate/sodium caseinate aqueous-core capsules: A pH-responsive matrix. J. Colloid Interface Sci. 440, 1–8 (2015)

    Article  Google Scholar 

  37. S. Leick, M. Kott, P. Degen, S. Henning, T. Päsler, D. Suter, H. Rehage, Mechanical properties of liquid-filled shellac composite capsules. Phys. Chem. Chem. Phys. 13(7), 2765–2773 (2011)

    Article  CAS  Google Scholar 

  38. E. Zwar, A. Kemna, L. Richter, P. Degen, H. Rehage, Production, deformation and mechanical investigation of magnetic alginate capsules. J. Phys. Condens. Matter 30(8) (2018) number 085101

    PubMed  Google Scholar 

  39. P. Lopez-Sanchez, N. Fredriksson, A. Larsson, A. Altskärc, A. Strömb, High sugar content impacts microstructure, mechanics and release of calcium-alginate gels. Food Hydrocoll. 84, 26–33 (2018)

    Article  CAS  Google Scholar 

  40. P.E. Ramos, P. Silva, M.M. Alario, L.M. Pastrana, J.A. Teixeira, M.A. Cerqueira, A.A. Vicente, Effect of alginate molecular weight and M/G ratio in beads properties foreseeing the protection of probiotics. Food Hydrocoll. 77, 8–16 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We kindly acknowledge the supply of PGPR 90 by Danisco (France), the supply of alginate by Cargill (France), the technical assistance of Jean-Eudes Megret for compression experiments, and the financial support of one author (Mariana Pereda) by the National Research Council of Republic Argentina (CONICET) through the program “Becas en el Exterior para Jóvenes Investigadores del CONICET” (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Renard.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 494 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereda, M., Poncelet, D. & Renard, D. Characterization of Core-Shell Alginate Capsules. Food Biophysics 14, 467–478 (2019). https://doi.org/10.1007/s11483-019-09595-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-019-09595-x

Keywords

Navigation