Skip to main content
Log in

Oxidative Pattern from Fluorescent Light Exposition of Crystalline Cholesterol

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The photo-oxidation of crystalline cholesterol in the presence of hematoporphyrin was kinetically studied. Samples were exposed to fluorescent light at 12 °C for 48 h (Test-A) and 21 days (Test-B). A method based on aminopropyl solid-phase extraction (SPE), followed by GC-MS analysis was employed for the identification and quantification of cholesterol oxidative compounds (COPs). In early stages of photo-oxidation (Test-A), a hyperbolic behavior on peroxides value was found, but not quantifiable secondary products were detected. In Test-B, 58 % of cholesterol was remained after exposure, due probably to exhaustion of hematoporphyrin and/or physical state of sample. Type II photo-oxidation seemed to be quantitatively predominant, in respect to Type I. 3,6-dione and 6β-OH generated in highest amount, following by 5,6α-epoxy and 7α-OH. Oxidative pattern shows the formation of other minor compounds, such as 7-ketostanol, 6-ketostanol and 4β-OH. This last one was previously attributed only to enzymatic oxidation. Finally, the relationship between 7-keto and 25-OH were strongly shifted toward the side-chain product, due probably to the exposure of aliphatic chain in crystalline cholesterol. These results confirm the crucial importance of physical state of cholesterol during photo-oxidation, giving an interesting and more complex degradation behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

7α-OH:

7α-hydroxycholesterol

7β-OH:

7β-hydroxycholesterol

5,6α-epoxy:

5,6α-epoxycholesterol

5,6β-epoxy:

5,6β-epoxycholesterol

4β-OH:

4β-hydroxycholesterol

6β-OH:

6β-hydroxycholesterol

7-ketostanol:

7-ketocholestanol

6-ketostanol:

6-ketocholestanol

3,6-dione:

5α-cholestestan-3,6-dione

7-keto:

7-ketocholesterol

25-OH:

25-hydroxycholesterol

References

  1. T. Heimburg, Thermal Biophysics of Membrane (Wiley-VCH, Weinheim, 2007)

    Book  Google Scholar 

  2. V. Uskoković, Surface charge effect involved in the control of stability of sols comprising uniform cholesterol particles. Mater. Manuf. Process. 23, 620–623 (2008)

    Article  Google Scholar 

  3. L.L. Smith, Cholesterol autoxidation (1981–1986). Chem. Phys. Lip. 44, 87–125 (1987)

    Article  CAS  Google Scholar 

  4. A. Vejux, L. Malvitte, G. Lizard, Side effects of oxysterols: cytotoxicity, oxidation, inflammation, and phospholipidosis. Braz. J. Med. Biol. Res. 41, 545–556 (2008)

    Article  CAS  Google Scholar 

  5. S.J. Hur, G.B. Park, S.T. Joo, Formation of cholesterol oxidation products (COPs) in animal products. Food Control 18, 939–947 (2007)

    Article  CAS  Google Scholar 

  6. T. Saldanha, N. Bragagnolo, Effects of grilling on cholesterol oxide formation and fatty acids alteration in fish. Cienc. Tecnol. Alimen. 30(2), 385–390 (2010)

    Article  Google Scholar 

  7. L. Ryan, Y.C. O’Callaghan, N.M. O’Brien, Oxidized products of cholesterol: their role in apoptosis. Curr. Nut. Food Sci. 1, 41–51 (2005)

    Article  CAS  Google Scholar 

  8. G. Poli, B. Sottero, S. Gargiulo, G. Leonarduzzi, Cholesterol oxidation products in the vascular remodeling due to atherosclerosis. Mol. Aspects Med. 30, 180–189 (2009)

    Article  CAS  Google Scholar 

  9. K.A. Johnson, R.M. Montano, C.J. Morrow, T.J. Scallen, In vivo formation of 25-hydroxicholesterol following a dietary cholesterol challenge. J. Lipid Res. 35(12), 2241–2253 (1994)

    CAS  Google Scholar 

  10. G. Le Goff, M.F. Vitha, R.J. Clarke, Orientation polarisability of lipid membrane surface. Biochim. Biophys. Acta 1768(3), 562–570 (2007)

    Article  Google Scholar 

  11. K. Bodin, U. Andersson, E. Rystedt, E. Ellis, M. Norlin, I. Pikuleva, G. Eggertsen, I. Björkhem, U. Diczfalusy, Metabolism of 4β-hydroxycholesterol in humans. J. Biol. Chem. 276, 38685–38689 (2002)

    Article  Google Scholar 

  12. I.G. Medina-Meza, M.T. Rodríguez-Estrada, G. Lercker, H.S. García, Unusual oxidative pattern in thermo-oxidation of dry films of cholesterol. Rev. Mex. Ing. Quim. 10(1), 47–57 (2011)

    CAS  Google Scholar 

  13. J.T. Chien, H.C. Wang, B.H. Chen, Kinetic model of the cholesterol oxidation during heating. J. Agr. Food Chem. 46, 2572–2577 (1998)

    Article  CAS  Google Scholar 

  14. T.Y. Yen, B.S. Inbaraj, J.T. Chien, B.H. Chen, Gas chromatography–mass spectrometry determination of conjugated linoleic acids and cholesterol oxides and their stability in a model system. Anal. Biochem. 400, 130–138 (2010)

    Article  CAS  Google Scholar 

  15. J.M. Luby, J.I. Gray, B.R. Harte, T.C. Ryan, Photooxidation of cholesterol in butter. J. Food Sci. 51(4), 904–907 (1986)

    Article  CAS  Google Scholar 

  16. E. Boselli, M.F. Caboni, M.T. Rodríguez-Estrada, T. Gallina-Toschi, D. Mara, G. Lercker, Photooxidation of cholesterol and lipids of turkey meat during storage under commercial retail conditions. Food Chem. 91, 705–713 (2005)

    Article  CAS  Google Scholar 

  17. E. Boselli, M.T. Rodríguez-Estrada, G. Fedrizzi, M.F. Caboni, Cholesterol photosensitized oxidation of beef meat under standard and modified atmosphere at retail condition. Meat Sci. 81, 224–229 (2009)

    Article  CAS  Google Scholar 

  18. G. Maerker, K.C. Jones, Gamma-irradiation of individual cholesterol oxidation products. J. Am. Oil Chem. Soc. 70(3), 255–259 (1992)

    Article  Google Scholar 

  19. G. Maerker, K.C. Jones, A-ring oxidation products from γ-irradiation of cholesterol in liposomes. J. Am. Oil Chem. Soc. 69, 451–455 (1993)

    Article  Google Scholar 

  20. P.O. Hu, B.H. Chen, Effects of riboflavin and fatty acid methyl esters on cholesterol oxidation during illumination. J. Agr. Food Chem. 50(12), 3572–3578 (2002)

    Article  CAS  Google Scholar 

  21. J.T. Chien, Y.F. Lu, P.C. Hu, B.H. Chen, Cholesterol photooxidation as affected by combination of riboflavin and fatty acid methyl esters. Food Chem. 81, 421–431 (2003)

    Article  CAS  Google Scholar 

  22. M.J. Kulig, L.L. Smith, Sterol metabolism. XXV. Cholesterol oxidation by singlet molecular oxygen. J. Org. Chem. 38(20), 3639–3641 (1973)

    Article  CAS  Google Scholar 

  23. C.S. Foote, Definition of type I and type II photosensitized oxidation. J. Photoch. Photobio. 54(5), 659 (1991)

    Article  CAS  Google Scholar 

  24. A.W. Girotti, Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanism. J. Photoch. Photobio. B 63, 103–113 (2001)

    Article  CAS  Google Scholar 

  25. N.C. Shantha, E.A. Decker, Rapid, sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids. J. AOAC Int. 77(2), 421–424 (1994)

    CAS  Google Scholar 

  26. C. Rose-Sallin, A.C. Huggett, J.O. Bosset, R. Tabacchi, L.B. Fay, Quantification of cholesterol oxidation products in milk powders using [2H7]cholesterol to monitor cholesterol autoxidation artifacts. J. Agr. Food Chem. 43(4), 935–941 (1995)

    Article  CAS  Google Scholar 

  27. N. Li, T. Ohshima, K. Shozen, H. Ushio, C. Koizumi, Effects of the degree of unsaturation of coexisting trialglycerols on cholesterol oxidation. J. Am. Oil Chem. Soc. 71, 623–627 (1994)

    Article  CAS  Google Scholar 

  28. V. Cardenia, M.T. Rodríguez-Estrada, F. Cumella, L. Sardi, G. Della Casa, G. Lercker, Oxidative stability of pork meat lipids as related to high-oleic sunflower oil and vitamin E diet supplementation and storage conditions. Meat Sci. 88(2), 271–279 (2011)

    Article  CAS  Google Scholar 

  29. K. Wang, I.C. Peng, Electron paramagnetic resonance study of the effectiveness of myoglobin and its derivative as photosensitizer in singles oxygen generation. J. Food Sci. 53(6), 1863–1865 (1988)

    Article  Google Scholar 

  30. A. Santos, A.M. Rodrigues, A.J.F.N. Sobral, P.V. Monsanto, W.L. Vaz, M.J. Moreno, Early events in photodynamic therapy: chemical and physical changes in a POPC: cholesterol bilayer due to the hematoporphyrin IX-mediated photosensitization. Photoch. Photobio. 85, 1409–1417 (2009)

    Article  CAS  Google Scholar 

  31. J.M.C. Gutteridge, B. Halliwell, Free radicals and antioxidants in the year 2000: a historical look to the future. Ann. N. Y. Acad. Sci. 889, 136–147 (2000)

    Google Scholar 

  32. A.W. Girotti, Lipid hydroperoxydes generation, turnover, and effector action in biological systems. J. Lip. Res. 39, 1529–1542 (1998)

    CAS  Google Scholar 

  33. E. Choe, D.B. Min, Chemistry and reaction of reactive oxygen species in foods. J. Food Sci. 70(9), 142–159 (2005)

    Article  Google Scholar 

  34. J.P. Wold, A.V. Dahl, F. Lundby, N.A. Nilsen, A. Juzeniene, J. Moan, Effect of oxygen concentration on photo-oxidation and photosensitizer bleaching in butter. Photochem. Photobio. 85, 669–676 (2009)

    Article  CAS  Google Scholar 

  35. L.L. Smith, M.J. Kulig, Sterol metabolism. XXXIX. Singlet molecular oxygen from hydrogen peroxide disproportionation. J. Am. Chem. Soc. 98(4), 1027–1029 (1976)

    Article  CAS  Google Scholar 

  36. G. Lercker, M.T. Rodríguez-Estrada, M. Bonoli, Analysis of the oxidation products of cis- and trans-octadecenoate methyl esters by capillary gas-chromatography-ion-trap mass spectrometry. I. Epoxide and dimeric compounds. J. Chromatogr. A 985, 333–342 (2003)

    Article  CAS  Google Scholar 

  37. A.W. Girotti, Photosensitized oxidation of cholesterol in biological systems: reaction pathways, cytotoxic effects and defense mechanism. J. Photochem. Photobio. B 13(2), 105–118 (1992)

    Article  CAS  Google Scholar 

  38. G. Maerker, Cholesterol autoxidation-current status. J. Am. Oil Chem. Soc. 64, 388–392 (1987)

    Article  CAS  Google Scholar 

  39. L.L. Smith, Review of progress in sterol oxidation. Lipids 31, 453–488 (1986)

    Article  Google Scholar 

  40. R.S. Abendan, J.A. Swift, Surface characterization of cholesterol monohydrated single crystal by chemical force microscopy. Langmuir 18, 4847–4853 (2002)

    Article  CAS  Google Scholar 

  41. C.R. Loomis, G.G. Shipley, D.M. Small, The phase behavior of hydrated cholesterol. J. Lipid Res. 20, 525–535 (1979)

    CAS  Google Scholar 

Download references

Acknowledgment

We thank Stefano Savioli and Mara Mandrioli (University of Bologna) for their technical support and assistance during sample analysis, and Carlo Barnaba (ITESO) for manuscript revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilce Gabriela Medina-Meza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medina-Meza, I.G., Rodríguez-Estrada, M.T., García, H.S. et al. Oxidative Pattern from Fluorescent Light Exposition of Crystalline Cholesterol. Food Biophysics 7, 209–219 (2012). https://doi.org/10.1007/s11483-012-9259-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-012-9259-y

Keywords

Navigation