Skip to main content
Log in

Modeling the Effect of Glucose Syrup on the Moisture Sorption Isotherm of Figs

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Moisture sorption isotherms of figs with and without glucose syrup (at 20% and 40%, w/w) were determined at 5 °C, 25 °C, and 40 °C. A static gravimetric method was used under 0.11–0.84 water activity ranges for the determination of sorption isotherms that were found to be typical type ΙΙΙ for control sample. The inclusion of glucose syrup had significant effects on the sorption isotherms, and the moisture content of samples at each a w decreased with increasing temperature. The experimental data were fitted well with two-parameter Brunauer–Emmet–Teller, three-parameter Guggenheim–Anderson–de Boer, and four-parameter Peleg models that all had R 2 of greater than 0.99. The net isosteric heats of sorption were estimated using the Clausius–Clapeyron equation from the equilibrium data at different temperatures. It was found that the addition of glucose syrup significantly increased the amount of monolayer water and the isosteric heat of sorption. Both water activity and isosteric heat of sorption increased with glucose syrup level and the shape and status of sorption isotherms tend to change toward the typical sigmoid shape of most food systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O.R. Fennema, Food Chemistry, 2nd edn. (Marcel Dekker, New York, 1985)

    Google Scholar 

  2. T.P. Labuza, A theoretical comparison of loss in foods under fluctuating temperature sequences. J. Food Sci. 44, 1162–8 (1979)

    Article  Google Scholar 

  3. I. Saguy, M. Karel, Modelling of quality determination during food processing and storage. Food Technol. 34, 78–85 (1980)

    CAS  Google Scholar 

  4. C.J. Lomauro, A.S. Bakshi, T.P. Labuza, Evaluation of food moisture isotherm equations. Part I: fruit, vegetable and meat products. Lebensm. Wiss. Technol. 18, 111–7 (1985)

    Google Scholar 

  5. T.P. Labuza, A. Kaanane, J.Y. Chen, Effect of temperature on the water adsorption isotherms of two dehydrated foods. J. Food Sci. 50, 385–91 (1985)

    Article  CAS  Google Scholar 

  6. N.A. Aviara, O.O. Ajibola, U.O. Dairo, Thermodynamics of moisture sorption in sesame seed. Biosyst. Eng. 83, 423–31 (2002)

    Article  Google Scholar 

  7. N.A. Aviara, O.O. Ajibola, S.A. Oni, Sorption equilibrium and thermodynamic characteristics of soya bean. Biosyst. Eng. 87, 179–90 (2004)

    Article  Google Scholar 

  8. M. Kabirullah, R.B.H. Wills, Hydration characteristics of sunflower proteins. Lebensm. Wiss. Technol. 15, 267–9 (1982)

    CAS  Google Scholar 

  9. A. Nabill, H. Bouabidi, M. Trifi, M. Marrakchi, Water vapour desorption of Deglet Noor and Ali Dates. in Information and Technology for Sustainable Fruit and Vegetable Production (Montpellier, France, 2005)

  10. Z.B. Maroulis, E. Tsami, D. Marinos-Kouris, G.D. Saravacos, Application of the GAB model to the moisture sorption isotherms of dried fruits. J. Food Eng. 7, 63–78 (1988)

    Article  Google Scholar 

  11. E. Ayranci, G. Ayranci, Z. Dogantan, Moisture sorption isotherms of dried apricot, fig and raisin at 20 °C and 36 °C. J. Food Sci. 55, 1591–3 (1990)

    Article  Google Scholar 

  12. E. Tsami, D. Marinos-Kouris, Z.B. Maroulis, Water sorption isotherms of raisins, currants, figs, prunes and apricots. J. Food Sci. 55, 1594–7 (1990)

    Article  Google Scholar 

  13. G.D. Saravacos, D.A. Tsiourvas, E. Tsami, Effect of temperature on the water adsorption isotherms of sultana raisins. J. Food Sci. 51, 381–3 (1986)

    Article  Google Scholar 

  14. E.O. Timmermann, A BET-like three sorption stage isotherm. J. Chem. Soc. Faraday Trans. 85, 1631–45 (1989)

    CAS  Google Scholar 

  15. H. Bizot, Using the GAB model to construct sorption isotherms, in Physical Properties of Foods, ed. by R. Jowitt et al. (Applied Science, New York, 1983), pp. 43–54

    Google Scholar 

  16. C. Van den Berg, S. Bruin, Water activity and its estimation in food systems: theoretical aspects, in Water Activity: Influence on Food Quality, ed. by L.B. Rockland, G.F. Stewart (Academic, New York, 1981), pp. 147–77

    Google Scholar 

  17. M. Peleg, Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms. J. Food Process Eng 16, 21–37 (1993)

    Article  Google Scholar 

  18. A. Mulet, J. García-Reverter, R. Sanjuán, J. Bon, Sorption isosteric heat determination by thermal analysis and sorption isotherms. J. Food Sci. 64, 64–8 (1999)

    Article  CAS  Google Scholar 

  19. M. Duenas, J.J. Pe’rez-Alonso, C. Santos-Buelga, T. Escribano-Bailon, Anthocyanin composition in fig (Ficus carica L.). J. Food Compos. Anal. 21, 107–15 (2008)

    Article  CAS  Google Scholar 

  20. US Department of Agriculture, Agricultural Research Service, USDA Nutrient database for standard reference, release 15, Nutrient data laboratory home page (2002), http://www.nal.usda.gov/fnic/foodcomps

  21. FAO, Statistical database (2003), http://www.fao.org

  22. S.W. Pixton, S. Warburton, The relationship between moisture content and equilibrium relative humidity of dried figs. J. Stored Prod. Res. 12, 87–92 (1976)

    Article  Google Scholar 

  23. M.L. Meste, D. Champion, G. Roudaut, G. Blond, D. Simatos, Glass transition and food technology: a critical appraisal. J. Food Sci. 67, 2444–56 (2002)

    Article  Google Scholar 

  24. A.E. Sloan, T.P. Labuza, Prediction of water activity lowering ability of food humectants at high aw. J. Food Sci. 41, 532–5 (1976)

    Article  CAS  Google Scholar 

  25. A. Gauthier, B. Guerin, J. Oztlieb, Les sirops, vol. 18 (CDIUP A, France, 1978)

    Google Scholar 

  26. J.N. Coupland, N.B. Shaw, F.J. Monahan, E.D. O’Riordan, M. O’Sullivan, Modeling the effect of glycerol on the moisture sorption behavior of whey protein edible films. J. Food Eng. 43, 25–30 (2000)

    Article  Google Scholar 

  27. R. Chinnaswamy, M.A. Hanna, Expansion, color and shear strength properties of corn starches extrusion-cooked with urea and salts. Starch Starke 40, 186–90 (1998)

    Article  Google Scholar 

  28. D. Moore, A. Sanei, E. Van Hecke, J.M. Bouvier, Effect of ingredients on physical/structural properties of extrudates. J. Food Sci. 55, 1383–7 (1990)

    Article  Google Scholar 

  29. C.W.P. Carvalho, J.R. Mitchell, Effect of sucrose on starch conversion and glass transition on nonexpanded maize and wheat extrudates. Cereal Chem. 78, 342–8 (2001)

    Article  CAS  Google Scholar 

  30. A. Farahnaky, S. Ansari, M. Majzoobi, Effect of glycerol on the moisture sorption isotherms of figs. J. Food Eng. 93, 468–73 (2009)

    Article  CAS  Google Scholar 

  31. Association of Official Analytical Chemist, Official Methods of Analysis of the Association of Official Analytical Chemist (Association of Official Analytical Chemist, Washington, DC, 1990)

    Google Scholar 

  32. S.S.H. Rizvi, Thermodynamic properties of foods in dehydration, in Engineering Properties of Foods, ed. by A. Rao, S.S.H. Rizvi, A.K. Datta (CRC, Boca Raton, 2005)

    Google Scholar 

  33. E. Karmas, Techniques for measurement of moisture content of foods. Food Technol. 34, 52–62 (1980)

    Google Scholar 

  34. R. Boquet, J. Chirife, H.A. Iglesias, Equations for fitting water sorption isotherms of foods: part 2—evaluation of various two-parameter models. J. Food Technol. 13, 319–27 (1978)

    Article  Google Scholar 

  35. M.M.I. Chowdhury, M.D. Huda, M.A. Hossain, M.S. Hassan, Moisture sorption isotherms for mungbean (Vigna radiata L). J. Food Eng. 74, 462–7 (2006)

    Article  Google Scholar 

  36. K.D. Foster, J.E. Bronlund, A.H.J. Paterson, The prediction of moisture sorption isotherms for dairy powders. Int. Dairy J. 15, 411–8 (2005)

    Article  CAS  Google Scholar 

  37. A. Jamali, M. Kouhila, L. Ait Mohamed, A. Idlimam, L. Lamharrar, Moisture adsorption–desorption isotherms of citrus reticulate leaves at three temperatures. J. Food Eng. 77, 71–8 (2006)

    Article  Google Scholar 

  38. A.H. Al-Muhtaseb, W.A.M. McMinn, T.R.A. Magee, Water sorption isotherms of starch powders. Part 1: mathematical description of experimental data. J. Food Eng. 61, 297–307 (2004)

    Article  Google Scholar 

  39. N.A. Aviara, O.O. Ajibola, O.A. Aregbesola, M.A. Adedeji, Moisture sorption isotherms of sorghum malt at 40 and 50 °C. J. Stored Prod. Res. 42, 290–301 (2006)

    Article  CAS  Google Scholar 

  40. B. Brett, M. Figueroa, A.J. Sandoval, J.A. Barreiro, A.J. Müller, Moisture sorption characteristics of starchy products: oat flour and rice flour. Food Biophys. 4, 151–7 (2009)

    Article  Google Scholar 

  41. A. Mulet, P. García-Pascual, N. Sanjuán, J. García-Reverter, Equilibrium isotherms and isosteric heats of morel (Morchela esculenta). J. Food Eng. 53, 75–81 (2002)

    Article  Google Scholar 

  42. C.P. McLaughlin, T.R.A. Magee, The determination of sorption isotherms and the isosteric heats of sorption for potatoes. J. Food Eng. 35, 267–80 (1998)

    Article  Google Scholar 

  43. A. Ayranci, O. Duman, Moisture sorption isotherms of cowpea (Vigna unguiculata L. Walp) and its protein isolate at 10, 20 and 30 °C. J. Food Eng. 70, 83–91 (2005)

    Article  Google Scholar 

  44. K.O. Falade, O.C. Aworh, Adsorption isotherms of osmooven dried African star apple (Chrysophyllum albidum) and African mango (Irvingia gabonensis) slices. Eur. Food Res. Technol. 218, 278–83 (2004)

    Article  CAS  Google Scholar 

  45. A.M. Goula, T.D. Karapantsios, D.S. Achilias, K.G. Adamopoulos, Water sorption isotherms and glass transition temperature of spray dried tomato pulp. J. Food Eng. 85, 73–83 (2008)

    Article  Google Scholar 

  46. S. Mali, L.S. Sakanaka, F. Yamashita, M.V.E. Grossmann, Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydr. Polym. 60, 283–9 (2005)

    Article  CAS  Google Scholar 

  47. M.B. Gencturk, A.S. Bakshi, Y.C. Hong, T.P. Labuza, Moisture transfer properties of wild rice. J. Food Process Eng 8, 243–61 (1986)

    Article  Google Scholar 

  48. F. Kaymak-Ertekin, A. Gedik, Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes. Lebensm. Wiss. Technol. 37, 429–38 (2004)

    Article  CAS  Google Scholar 

  49. C.T. Kiranoudis, Z.B. Maroulis, E. Tsami, D. Marinos-Kouris, Equilibrium moisture content and heat of desorption of some vegetables. J. Food Eng. 20, 55–74 (1993)

    Article  Google Scholar 

  50. K.B. Palipane, R.H. Driscoll, Moisture sorption characteristics of in-shell macadamia nuts. J. Food Eng. 18, 63–76 (1992)

    Article  Google Scholar 

  51. G. Moraga, N. Mart_nez-Navarrete, A. Chiralt, Water sorption isotherms and glass transition in strawberries: influence of pretreatment. J. Food Eng. 62, 315–21 (2004)

    Article  Google Scholar 

  52. M. Maskan, F. Gogus, Sorption isotherms and drying characteristics of mulberry (Morus alba). J. Food Eng. 37, 437–49 (1998)

    Article  Google Scholar 

  53. G. Moraga, N. Martinez-Navarrete, A. Chiralt, Water sorption isotherms and phase transitions in kiwifruit. J. Food Eng. 72, 147–56 (2006)

    Article  Google Scholar 

  54. E.O. Timmermann, J. Chirife, H.A. Iglesias, Water sorption isotherms of foods and foodstuffs: BET or GAB parameters. J. Food Eng. 48, 19–31 (2001)

    Article  Google Scholar 

  55. C.S. Ethmane, M. Kane, A. Kouhila, A. Lamharrar, A. Idlimam, A. Mimet, Moisture sorption isotherms and thermodynamic properties of tow mints: Mentha pulegium and Mentha rotundifolia. Rev. Energ. Renouv. 11, 181–95 (2008)

    Google Scholar 

  56. B.H. Hassan, Moisture sorption characteristics of dried date powder. J. King Saud Univ. 14, 105–12 (2000)

    Google Scholar 

  57. A. Idlimam, A. Lamharrar, N. Abdenouri, S. Akkad, C.S. Ethmane Kane, A. Jamali, M. Kouhila, Thermodynamic properties and moisture sorption isotherms of Argania spinosa and Zygophyllum gaetulum. J. Agrono. 7, 1–14 (2008)

    Article  Google Scholar 

  58. A. Lamharrar, A. Idlimam, M. Kouhila, Thermodynamic properties and moisture sorption isotherms of Artemisia herba-alba. Rev. Energ. Renouv. 10(3), 311–20 (2007)

    Google Scholar 

  59. M.S. Rahman, S.S. Sablani, M.H. Al-Ruzeiqi, N. Guizani, Water adsorption isotherms of freeze-dried tuna meat. Trans. ASAE 45(3), 767–72 (2002)

    Google Scholar 

Download references

Acknowledgments

This research project was financially supported by Centre of Excellence for Fig Research of Shiraz University (Shiraz, Iran).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asgar Farahnaky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansari, S., Farahnaky, A., Majzoobi, M. et al. Modeling the Effect of Glucose Syrup on the Moisture Sorption Isotherm of Figs. Food Biophysics 6, 377–389 (2011). https://doi.org/10.1007/s11483-011-9213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-011-9213-4

Keywords

Navigation