Skip to main content

Advertisement

Log in

Neuroinflammatory Responses and Parkinson’ Disease: Pathogenic Mechanisms and Therapeutic Targets

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the second most common age-related neurodegenerative disorders of the central nervous system, which mainly impairs the motor system. However, the pathogenic mechanisms are still unclear. Gene–environment complex interaction leads to selective dopaminergic neuron death in PD. Growing evidences supports that neuroinflammatory responses are involved in the pathogenesis of PD. This review critically discusses current studies on the inflammatory response of the pathological process of PD. The mechanisms and strategies of modifying inflammatory responses would be potential treatments for neurodegenerative diseases.

Activated microglia canpromote the damage ofdopaminergic neurons, which inturn aggravates the activation ofmicroglia in the process of PD. Atthe same time, microglia canactivate astrocytes throughproliferation and secretion ofinflammatory factors. The role ofastrocytes on the loss ofdopaminergic neurons is stillcontroversial in PD. (Nonsteroidalanti-inflammatory drugs,NSAIDs. adiposed-derived stemcells, ADSCs.nicotinamideadenine dinucleotide phosphate,NADPH. signal transducers andactivators of transcription,STAT.DJ-1,Aliases forPARK7.mesencephalic astrocytederivedneurotrophic factor,MANF.Ciliary neurotrophicfactor,CNTF.glial cell linederivedneurotrophic factor,GDNF.Wnt Family Member1,Wnt1).

Mitochondrial dysfunction causes neuroinflammation throughDAMPs and a series of factors such as oxidative stress andinflammatory bodies in PD. (Damage-associated molecular patterns,DAMPs. reactive oxygen species, ROS).

Various mechanismsparticipate in NLRP3 activation,causing microglia activation inPD. ( -synuclein, -syn.) TolllikeReceptor 2, TLR2. Toll-likeReceptor 4, TLR4. TumorNecrosis Factor, TNF.Apoptosisassociated speck like proteincontaining a CARD, ASC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez JI, Katayama T, Prat A (2013) Glial influence on the blood brain barrier. GLIA 61:1939–1958

    PubMed  PubMed Central  Google Scholar 

  • Aron L, Klein R (2011) Repairing the parkinsonian brain with neurotrophic factors. Trends Neurosci 34:88–100

    CAS  PubMed  Google Scholar 

  • Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787–791

    CAS  PubMed  Google Scholar 

  • Braak H, Del TK, Rub U, de Vos RA, Jansen SE, Braak E (2003) Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 24:197–211

    PubMed  Google Scholar 

  • Butovsky O, Weiner HL (2018) Microglial signatures and their role in health and disease. Nat Rev Neurosci 19:622–635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calabrese V, Santoro A, Monti D, Crupi R, di Paola R, Latteri S, Cuzzocrea S, Zappia M, Giordano J, Calabrese EJ, Franceschi C (2018) Aging and Parkinson's Disease: Inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radic Biol Med 115:80–91

    CAS  PubMed  Google Scholar 

  • Cao B, Wang T, Qu Q, Kang T, Yang Q (2018) Long noncoding RNA SNHG1 promotes Neuroinflammation in Parkinson's Disease via regulating miR-7/NLRP3 pathway. Neuroscience 388:118–127

    CAS  PubMed  Google Scholar 

  • Chaudhuri KR, Todorova A, Nirenberg MJ, Parry M, Martin A, Martinez-Martin P, Rizos A, Henriksen T, Jost W, Storch A, Ebersbach G, Reichmann H, Odin P, Antonini A (2015) A pilot prospective, multicenter observational study of dopamine agonist withdrawal syndrome in Parkinson's disease. Mov Disord Clin Pract 2:170–174

    PubMed  PubMed Central  Google Scholar 

  • Chen J, Ren Y, Gui C, Zhao M, Wu X, Mao K, Li W, Zou F (2018) Phosphorylation of Parkin at serine 131 by p38 MAPK promotes mitochondrial dysfunction and neuronal death in mutant A53T alpha-synuclein model of Parkinson's disease. Cell Death Dis 9:700

    PubMed  PubMed Central  Google Scholar 

  • Choi DJ, Eun JH, Kim BG, Jou I, Park SM, Joe EH (2018) A Parkinson's disease gene, DJ-1, repairs brain injury through Sox9 stabilization and astrogliosis. GLIA 66:445–458

    PubMed  Google Scholar 

  • Choi DJ, Yang H, Gaire S, Lee KA, An J, Kim BG, Jou I, Park SM, Joe EH (2020) Critical roles of astrocytic-CCL2-dependent monocyte infiltration in a DJ-1 knockout mouse model of delayed brain repair. GLIA. https://doi.org/10.1002/glia.23828

  • Comi C, Cosentino M, Pacheco R (2019) Editorial: peripheral immunity in Parkinson's Disease: emerging role and novel target for therapeutics. Front Neurol 10:1080

    PubMed  PubMed Central  Google Scholar 

  • Davie CA (2008) A review of Parkinson's disease. Br Med Bull 86:109–127

    CAS  PubMed  Google Scholar 

  • De Luca C, Colangelo AM, Alberghina L, Papa M (2018) Neuro-immune hemostasis: homeostasis and diseases in the central nervous system. Front Cell Neurosci 12:459

    PubMed  PubMed Central  Google Scholar 

  • De Miranda BR, Rocha EM, Bai Q et al (2018) Astrocyte-specific DJ-1 overexpression protects against rotenone-induced neurotoxicity in a rat model of Parkinson's disease. Neurobiol Dis 115:101–114

    PubMed  PubMed Central  Google Scholar 

  • Desai BB, Patel A, Schneider JA, Carvey PM, Hendey B (2012) Evidence for angiogenesis in Parkinson's disease, incidental Lewy body disease, and progressive supranuclear palsy. J Neural Transm (Vienna) 119:59–71

    Google Scholar 

  • di Domenico A, Carola G, Calatayud C, Pons-Espinal M, Muñoz JP, Richaud-Patin Y, Fernandez-Carasa I, Gut M, Faella A, Parameswaran J, Soriano J, Ferrer I, Tolosa E, Zorzano A, Cuervo AM, Raya A, Consiglio A (2019) Patient-specific iPSC-derived astrocytes contribute to non-cell-autonomous Neurodegeneration in Parkinson's Disease. Stem Cell Rep 12:213–229

    Google Scholar 

  • Diniz LP, Matias I, Araujo A et al (2019) Alpha-synuclein oligomers enhance astrocyte-induced synapse formation through TGF-beta1 signaling in a Parkinson's disease model. J Neurochem 150:138–157

    CAS  PubMed  Google Scholar 

  • Dorf ME, Berman MA, Tanabe S, Heesen M, Luo Y (2000) Astrocytes express functional chemokine receptors. J Neuroimmunol 111:109–121

    CAS  PubMed  Google Scholar 

  • Drouin-Ouellet J, St-Amour I, Saint-Pierre M et al (2014) Toll-like receptor expression in the blood and brain of patients and a mouse model of Parkinson’s disease. Int J Neuropsychopharmacol 18(6):1–11

  • Ebrahimi-Fakhari D, Wahlster L, McLean PJ (2012) Protein degradation pathways in Parkinson’s disease: curse or blessing. Acta Neuropathol 124:153–172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Z, Lu M, Qiao C, Zhou Y, Ding JH, Hu G (2016) MicroRNA-7 enhances subventricular zone neurogenesis by inhibiting NLRP3/Caspase-1 Axis in adult Neural stem cells. Mol Neurobiol 53:7057–7069

    CAS  PubMed  Google Scholar 

  • Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, Lautrup S, Hasan-Olive MM, Caponio D, Dan X, Rocktäschel P, Croteau DL, Akbari M, Greig NH, Fladby T, Nilsen H, Cader MZ, Mattson MP, Tavernarakis N, Bohr VA (2019) Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of Alzheimer's disease. Nat Neurosci 22:401–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fellner L, Irschick R, Schanda K, Reindl M, Klimaschewski L, Poewe W, Wenning GK, Stefanova N (2013) Toll-like receptor 4 is required for alpha-synuclein dependent activation of microglia and astroglia. GLIA 61:349–360

    PubMed  PubMed Central  Google Scholar 

  • Frakes AE, Ferraiuolo L, Haidet-Phillips AM, Schmelzer L, Braun L, Miranda CJ, Ladner KJ, Bevan AK, Foust KD, Godbout JP, Popovich PG, Guttridge DC, Kaspar BK (2014) Microglia induce motor neuron death via the classical NF-kappaB pathway in amyotrophic lateral sclerosis. Neuron 81:1009–1023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fricke IB, Viel T, Worlitzer MM, Collmann FM, Vrachimis A, Faust A, Wachsmuth L, Faber C, Dollé F, Kuhlmann MT, Schäfers K, Hermann S, Schwamborn JC, Jacobs AH (2016) 6-hydroxydopamine-induced Parkinson's disease-like degeneration generates acute microgliosis and astrogliosis in the nigrostriatal system but no bioluminescence imaging-detectable alteration in adult neurogenesis. Eur J Neurosci 43:1352–1365

    PubMed  Google Scholar 

  • Giridharan VV, Reus GZ, Selvaraj S, Scaini G, Barichello T, Quevedo J (2019) Maternal deprivation increases microglial activation and neuroinflammatory markers in the prefrontal cortex and hippocampus of infant rats. J Psychiatr Res 115:13–20

    PubMed  Google Scholar 

  • Gordon R, Albornoz EA, Christie DC et al (2018) Inflammasome inhibition prevents alpha-synuclein pathology and dopaminergic neurodegeneration in mice. Sci Transl Med 10(465):1–12

  • Gui C, Ren Y, Chen J, Wu X, Mao K, Li H, Yu H, Zou F, Li W (2020) p38 MAPK-DRP1 signaling is involved in mitochondrial dysfunction and cell death in mutant A53T alpha-synuclein model of Parkinson's disease. Toxicol Appl Pharmacol 388:114874

    CAS  PubMed  Google Scholar 

  • Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362

    CAS  PubMed  Google Scholar 

  • Heid ME, Keyel PA, Kamga C, Shiva S, Watkins SC, Salter RD (2013) Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J Immunol 191:5230–5238

    CAS  PubMed  Google Scholar 

  • Herrera-Ruiz M, Jimenez-Ferrer E, Tortoriello J et al (2019) Anti-neuroinflammatory effect of agaves and cantalasaponin-1 in a model of LPS-induced damage. Nat Prod Res 14:1–4

    Google Scholar 

  • Hunter RL, Dragicevic N, Seifert K, Choi DY, Liu M, Kim HC, Cass WA, Sullivan PG, Bing G (2007) Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J Neurochem 100:1375–1386

    CAS  PubMed  Google Scholar 

  • Jankovic J (2008) Parkinson's disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376

    CAS  PubMed  Google Scholar 

  • Joshi N, Singh S (2018) Updates on immunity and inflammation in Parkinson disease pathology. J Neurosci Res 96:379–390

    CAS  PubMed  Google Scholar 

  • Julian MW, Shao G, Bao S, Knoell DL, Papenfuss TL, VanGundy ZC, Crouser ED (2012) Mitochondrial transcription factor a serves as a danger signal by augmenting plasmacytoid dendritic cell responses to DNA. J Immunol 189:433–443

    CAS  PubMed  Google Scholar 

  • Kabaria S, Choi DC, Chaudhuri AD, Mouradian MM, Junn E (2015) Inhibition of miR-34b and miR-34c enhances alpha-synuclein expression in Parkinson's disease. FEBS Lett 589:319–325

    CAS  PubMed  Google Scholar 

  • Kalia LV, Lang AE (2015) Parkinson's disease. Lancet 386:896–912

    CAS  PubMed  Google Scholar 

  • Kannarkat GT, Boss JM, Tansey MG (2013) The role of innate and adaptive immunity in Parkinson's disease. J Park Dis 3:493–514

    Google Scholar 

  • Kanthasamy A, Jin H, Charli A, Vellareddy A, Kanthasamy A (2019) Environmental neurotoxicant-induced dopaminergic neurodegeneration: a potential link to impaired neuroinflammatory mechanisms. Pharmacol Ther 197:61–82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kempuraj D, Ahmed ME and Selvakumar GP, et al (2019) Brain injury-mediated Neuroinflammatory response and Alzheimer’s Disease. Neuroscientist 26(2):134–155

  • Kim C, Ho DH, Suk JE, You S, Michael S, Kang J, Joong Lee S, Masliah E, Hwang D, Lee HJ, Lee SJ (2013) Neuron-released oligomeric alpha-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 4:1562

    PubMed  Google Scholar 

  • Kim S, Kwon SH, Kam TI, Panicker N, Karuppagounder SS, Lee S, Lee JH, Kim WR, Kook M, Foss CA, Shen C, Lee H, Kulkarni S, Pasricha PJ, Lee G, Pomper MG, Dawson VL, Dawson TM, Ko HS (2019) Transneuronal propagation of pathologic alpha-Synuclein from the gut to the brain models Parkinson's Disease. Neuron 103:627–641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong H, Yang L, He C, Zhou JW, Li WZ, Wu WN, Chen HQ, Yin YY (2019) Chronic unpredictable mild stress accelerates lipopolysaccharide- induced microglia activation and damage of dopaminergic neurons in rats. Pharmacol Biochem Behav 179:142–149

    CAS  PubMed  Google Scholar 

  • Kustrimovic N, Comi C, Magistrelli L, Rasini E, Legnaro M, Bombelli R, Aleksic I, Blandini F, Minafra B, Riboldazzi G, Sturchio A, Mauri M, Bono G, Marino F, Cosentino M (2018) Parkinson's disease patients have a complex phenotypic and functional Th1 bias: cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naive and drug-treated patients. J Neuroinflammation 15:205

    PubMed  PubMed Central  Google Scholar 

  • Lacy M, Jones J, Whittemore SR, Haviland DL, Wetsel RA, Barnum SR (1995) Expression of the receptors for the C5a anaphylatoxin, interleukin-8 and FMLP by human astrocytes and microglia. J Neuroimmunol 61:71–78

    CAS  PubMed  Google Scholar 

  • Larsen SB, Hanss Z, Kruger R (2018) The genetic architecture of mitochondrial dysfunction in Parkinson's disease. Cell Tissue Res 373:21–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee E, Hwang I, Park S et al (2018) MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. Cell Death Differ 26(2):213–228

  • Lee Y, Lee S, Chang SC, Lee J (2019) Significant roles of neuroinflammation in Parkinson's disease: therapeutic targets for PD prevention. Arch Pharm Res 42:416–425

    CAS  PubMed  Google Scholar 

  • Li D, Yang H, Ma J, Luo S, Chen S, Gu Q (2018) MicroRNA-30e regulates neuroinflammation in MPTP model of Parkinson's disease by targeting Nlrp3. Hum Cell 31:106–115

    PubMed  Google Scholar 

  • Lim S, Kim HJ, Kim DK, Lee SJ (2018) Non-cell-autonomous actions of alpha-synuclein: implications in glial synucleinopathies. Prog Neurobiol 169:158–171

    CAS  PubMed  Google Scholar 

  • Liu Z, Huang Y, Cao BB, Qiu YH, Peng YP (2017) Th17 cells induce dopaminergic neuronal death via LFA-1/ICAM-1 interaction in a mouse model of Parkinson's Disease. Mol Neurobiol 54:7762–7776

    CAS  PubMed  Google Scholar 

  • Liu Q, Guo X, Huang Z et al (2020) Anti-neuroinflammatory effects of dimethylaminomylide (DMAMCL, i.e., ACT001) are associated with attenuating the NLRP3 in fl ammasome in MPTP-induced Parkinson disease in mice. Behav Brain Res 383:112539

    CAS  PubMed  Google Scholar 

  • Loria F, Vargas JY, Bousset L, Syan S, Salles A, Melki R, Zurzolo C (2017) Alpha-Synuclein transfer between neurons and astrocytes indicates that astrocytes play a role in degradation rather than in spreading. Acta Neuropathol 134:789–808

    CAS  PubMed  Google Scholar 

  • Luo J, Padhi P, Jin H, Anantharam V, Zenitsky G, Wang Q, Willette AA, Kanthasamy A, Kanthasamy AG (2019) Utilization of the CRISPR-Cas9 gene editing system to dissect Neuroinflammatory and Neuropharmacological mechanisms in Parkinson's Disease. J NeuroImmune Pharmacol 14:595–607

    PubMed  PubMed Central  Google Scholar 

  • Marchetti B (2018) Wnt/beta-Catenin signaling pathway governs a full program for dopaminergic neuron survival, neurorescue and regeneration in the MPTP mouse model of Parkinson's disease. Int J Mol Sci 19(12):3743

  • Marchetti B, Serra PA, Tirolo C, L'Episcopo F, Caniglia S, Gennuso F, Testa N, Miele E, Desole S, Barden N, Morale MC (2005) Glucocorticoid receptor-nitric oxide crosstalk and vulnerability to experimental parkinsonism: pivotal role for glia-neuron interactions. Brain Res Brain Res Rev 48:302–321

    CAS  PubMed  Google Scholar 

  • McCann MJ, O'Callaghan JP, Martin PM, Bertram T, Streit WJ (1996) Differential activation of microglia and astrocytes following trimethyl tin-induced neurodegeneration. Neuroscience 72:273–281

    CAS  PubMed  Google Scholar 

  • McGregor MJ, Cohen M, Stocks-Rankin CR et al (2011) Complaints in for-profit, non-profit and public nursing homes in two Canadian provinces. Open Med 5:e183–e192

    PubMed  PubMed Central  Google Scholar 

  • Mettang M, Reichel SN, Lattke M, Palmer A, Abaei A, Rasche V, Huber-Lang M, Baumann B, Wirth T (2018) IKK2/NF-kappaB signaling protects neurons after traumatic brain injury. FASEB J 32:1916–1932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minton K (2016) Inflammasome: anti-inflammatory effect of mitophagy. Nat Rev Immunol 16:206

    CAS  PubMed  Google Scholar 

  • Munoz MF, Arguelles S, Medina R, Cano M, Ayala A (2019) Adipose-derived stem cells decreased microglia activation and protected dopaminergic loss in rat lipopolysaccharide model. J Cell Physiol

  • Nakamura M, Okada S, Toyama Y, Okano H (2005) Role of IL-6 in spinal cord injury in a mouse model. Clin Rev Allergy Immunol 28:197–204

    CAS  PubMed  Google Scholar 

  • Narayan S, Liew Z, Bronstein JM, Ritz B (2017) Occupational pesticide use and Parkinson's disease in the Parkinson environment gene (PEG) study. Environ Int 107:266–273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osakada F, Ooto S, Akagi T, Mandai M, Akaike A, Takahashi M (2007) Wnt signaling promotes regeneration in the retina of adult mammals. J Neurosci 27:4210–4219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parkinson's Disease (2018) Pathogenesis and clinical aspects. Codon Publications, Brisbane (AU)

    Google Scholar 

  • Poly TN, Islam M, Yang HC, Li YJ (2019) Non-steroidal anti-inflammatory drugs and risk of Parkinson's disease in the elderly population: a meta-analysis. Eur J Clin Pharmacol 75:99–108

    PubMed  Google Scholar 

  • Ren Y, Chen J, Wu X, Gui C, Mao K, Zou F, Li W (2018) Role of c-Abl-GSK3beta signaling in MPP+-induced autophagy-Lysosomal dysfunction. Toxicol Sci 165:232–243

    CAS  PubMed  Google Scholar 

  • Sanyal A, DeAndrade MP, Novis HS et al (2020) Lysosome and inflammatory defects in GBA1-mutant astrocytes are normalized by LRRK2 inhibition. Mov Disord 35:760–773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, di Malta C, Donaudy F, Embrione V, Polishchuk RS, Banfi S, Parenti G, Cattaneo E, Ballabio A (2009) A gene network regulating lysosomal biogenesis and function. SCIENCE 325:473–477

    CAS  PubMed  Google Scholar 

  • Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA, Mohan G (2017) Neuroinflammation pathways: a general review. Int J Neurosci 127:624–633

    CAS  PubMed  Google Scholar 

  • Shen Y, Sun A, Wang Y, Cha D, Wang H, Wang F, Feng L, Fang S, Shen Y (2012) Upregulation of mesencephalic astrocyte-derived neurotrophic factor in glial cells is associated with ischemia-induced glial activation. J Neuroinflammation 9:254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi CS, Shenderov K, Huang NN, Kabat J, Abu-Asab M, Fitzgerald KA, Sher A, Kehrl JH (2012) Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 13:255–263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sierra A, Denes A (2019) Editorial for the special issue: microglia-neuron interactions in health and disease - novel perspectives for translational research. Neuroscience 405:1–2

    CAS  PubMed  Google Scholar 

  • Sliter DA, Martinez J, Hao L, Chen X, Sun N, Fischer TD, Burman JL, Li Y, Zhang Z, Narendra DP, Cai H, Borsche M, Klein C, Youle RJ (2018) Parkin and PINK1 mitigate STING-induced inflammation. Nature 561:258–262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sommer A, Maxreiter F, Krach F et al (2018) Th17 lymphocytes induce neuronal cell death in a human iPSC-based model of Parkinson's Disease. Cell Stem Cell 23:123–131

    CAS  PubMed  Google Scholar 

  • Sun C, Yu W, Zhao Z, Song C, Liu Y, Jia G, Wang X, Liu Y (2019) Peripheral Humoral immune response is associated with the non-motor symptoms of Parkinson's Disease. Front Neurosci 13:1057

    PubMed  PubMed Central  Google Scholar 

  • Tarakad A, Jankovic J (2017) Diagnosis and Management of Parkinson's Disease. Semin Neurol 37:118–126

    PubMed  Google Scholar 

  • Tsutsumi R, Hori Y, Seki T, Kurauchi Y, Sato M, Oshima M, Hisatsune A, Katsuki H (2019) Involvement of exosomes in dopaminergic neurodegeneration by microglial activation in midbrain slice cultures. Biochem Biophys Res Commun 511:427–433

    CAS  PubMed  Google Scholar 

  • Udovin L, Quarracino C, Herrera MI, Capani F, Otero-Losada M, Perez-Lloret S (2020) Role of Astrocytic dysfunction in the pathogenesis of Parkinson's Disease animal models from a molecular signaling perspective. Neural Plast 2020:1859431

    PubMed  PubMed Central  Google Scholar 

  • van der Brug MP, Singleton A, Gasser T, Lewis PA (2015) Parkinson's disease: from human genetics to clinical trials. Sci Transl Med 7:205p–220p

    Google Scholar 

  • Wilkins HM, Carl SM, Greenlief AC, Festoff BW, Swerdlow RH (2014) Bioenergetic dysfunction and inflammation in Alzheimer's disease: a possible connection. Front Aging Neurosci 6:311

    PubMed  PubMed Central  Google Scholar 

  • Wilkins HM, Carl SM, Weber SG, Ramanujan SA, Festoff BW, Linseman DA, Swerdlow RH (2015) Mitochondrial lysates induce inflammation and Alzheimer's disease-relevant changes in microglial and neuronal cells. J Alzheimers Dis 45:305–318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z, Zhou R (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160:62–73

    CAS  PubMed  Google Scholar 

  • Yu SY, Zuo LJ, Wang F, Chen ZJ, Hu Y, Wang YJ, Wang XM, Zhang W (2014) Potential biomarkers relating pathological proteins, neuroinflammatory factors and free radicals in PD patients with cognitive impairment: a cross-sectional study. BMC Neurol 14:113

    PubMed  PubMed Central  Google Scholar 

  • Yun SP, Kam TI, Panicker N, Kim SM, Oh Y, Park JS, Kwon SH, Park YJ, Karuppagounder SS, Park H, Kim S, Oh N, Kim NA, Lee S, Brahmachari S, Mao X, Lee JH, Kumar M, An D, Kang SU, Lee Y, Lee KC, Na DH, Kim D, Lee SH, Roschke VV, Liddelow SA, Mari Z, Barres BA, Dawson VL, Lee S, Dawson TM, Ko HS (2018) Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson's disease. Nat Med 24:931–938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zahoor I, Shafi A, Haq E (2018) Pharmacological treatment of Parkinson’s disease: a Review. JAMA 311(16):1670–1683

  • Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225

    CAS  PubMed  Google Scholar 

  • Zhou Y, Lu M, Du RH et al (2016) MicroRNA-7 targets nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson's disease. Mol Neurodegener 11:28

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jialong Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Mao, K., Yu, H. et al. Neuroinflammatory Responses and Parkinson’ Disease: Pathogenic Mechanisms and Therapeutic Targets. J Neuroimmune Pharmacol 15, 830–837 (2020). https://doi.org/10.1007/s11481-020-09926-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-020-09926-7

Keywords

Navigation