Skip to main content

Advertisement

Log in

Next Generation Precision Medicine: CRISPR-mediated Genome Editing for the Treatment of Neurodegenerative Disorders

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Despite significant advancements in the field of molecular neurobiology especially neuroinflammation and neurodegeneration, the highly complex molecular mechanisms underlying neurodegenerative diseases remain elusive. As a result, the development of the next generation neurotherapeutics has experienced a considerable lag phase. Recent advancements in the field of genome editing offer a new template for dissecting the precise molecular pathways underlying the complex neurodegenerative disorders. We believe that the innovative genome and transcriptome editing strategies offer an excellent opportunity to decipher novel therapeutic targets, develop novel neurodegenerative disease models, develop neuroimaging modalities, develop next-generation diagnostics as well as develop patient-specific precision-targeted personalized therapies to effectively treat neurodegenerative disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Amyotrophic lateral sclerosis, Frontotemporal dementia etc. Here, we review the latest developments in the field of CRISPR-mediated genome editing and provide unbiased futuristic insights regarding its translational potential to improve the treatment outcomes and minimize financial burden. However, despite significant advancements, we would caution the scientific community that since the CRISPR field is still evolving, currently we do not know the full spectrum of CRISPR-mediated side effects. In the wake of the recent news regarding CRISPR-edited human babies being born in China, we urge the scientific community to maintain high scientific and ethical standards and utilize CRISPR for developing in vitro disease in a dish model, in vivo testing in nonhuman primates and lower vertebrates and for the development of neurotherapeutics for the currently incurable neurodegenerative disorders.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K, Regev A, Lander ES, Koonin EV, Zhang F (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353:aaf5573

    PubMed  PubMed Central  Google Scholar 

  • Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A, Lander ES, Voytas DF, Ting AY, Zhang F (2017) RNA targeting with CRISPR-Cas13. Nature 550:280–284

    PubMed  PubMed Central  Google Scholar 

  • Agis-Balboa RC, Pinheiro PS, Rebola N, Kerimoglu C, Benito E, Gertig M, Bahari-Javan S, Jain G, Burkhardt S, Delalle I, Jatzko A, Dettenhofer M, Zunszain PA, Schmitt A, Falkai P, Pape JC, Binder EB, Mulle C, Fischer A, Sananbenesi F (2017) Formin 2 links neuropsychiatric phenotypes at young age to an increased risk for dementia. EMBO J 36:2815–2828

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmed ME, Iyer S, Thangavel R, Kempuraj D, Selvakumar GP, Raikwar SP, Zaheer S, Zaheer A (2017) Co-Localization of Glia Maturation Factor with NLRP3 Inflammasome and Autophagosome Markers in Human Alzheimer's Disease Brain. J Alzheimers Dis 60:1143–1160

    PubMed  PubMed Central  CAS  Google Scholar 

  • Akter K, Lanza EA, Martin SA, Myronyuk N, Rua M, Raffa RB (2011) Diabetes mellitus and Alzheimer's disease: shared pathology and treatment? Br J Clin Pharmacol 71:365–376

    PubMed  PubMed Central  CAS  Google Scholar 

  • Allen F, Crepaldi L, Alsinet C, Strong AJ, Kleshchevnikov V, De Angeli P, Palenikova P, Khodak A, Kiselev V, Kosicki M, Bassett AR, Harding H, Galanty Y, Munoz-Martinez F, Metzakopian E, Jackson SP, Parts L (2018) Predicting the mutations generated by repair of Cas9-induced double-strand breaks. Nat Biotechnol. https://doi.org/10.1038/nbt.4317

    Google Scholar 

  • Allende ML, Cook EK, Larman BC, Nugent A, Brady JM, Golebiowski D, Sena-Esteves M, Tifft CJ, Proia RL (2018) Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation. J Lipid Res 59:550–563

    PubMed  PubMed Central  CAS  Google Scholar 

  • An H, Skelt L, Notaro A, Highley JR, Fox AH, La Bella V, Buchman VL, Shelkovnikova TA (2019) ALS-linked FUS mutations confer loss and gain of function in the nucleus by promoting excessive formation of dysfunctional paraspeckles. Acta Neuropathol Commun 7:7. https://doi.org/10.1186/s40478-019-0658-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Arias-Fuenzalida J, Jarazo J, Qing X, Walter J, Gomez-Giro G, Nickels SL, Zaehres H, Scholer HR, Schwamborn JC (2017) FACS-Assisted CRISPR-Cas9 Genome Editing Facilitates Parkinson's Disease Modeling. Stem Cell Reports. https://doi.org/10.1016/j.stemcr.2017.08.026

    PubMed  PubMed Central  CAS  Google Scholar 

  • Arkinson C, Walden H (2018) Parkin function in Parkinson's disease. Science 360:267–268

    PubMed  CAS  Google Scholar 

  • Arthur LL, Chung JJ, Jankirama P, Keefer KM, Kolotilin I, Pavlovic-Djuranovic S, Chalker DL, Grbic V, Green R, Menassa R, True HL, Skeath JB, Djuranovic S (2017) Rapid generation of hypomorphic mutations. Nat Commun 8:14112. https://doi.org/10.1038/ncomms14112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473–1475

    PubMed  PubMed Central  CAS  Google Scholar 

  • Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, Church G, Corn JE, Daley GQ, Doudna JA, Fenner M, Greely HT, Jinek M, Martin GS, Penhoet E, Puck J, Sternberg SH, Weissman JS, Yamamoto KR (2015) Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science 348:36–38

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, Nance M, Ross CA, Scahill RI, Wetzel R, Wild EJ, Tabrizi SJ (2015) Huntington disease. Nat Rev Dis Primers 1:15005. https://doi.org/10.1038/nrdp.2015.5

    Article  PubMed  Google Scholar 

  • Becher B, Spath S, Goverman J (2017) Cytokine networks in neuroinflammation. Nat Rev Immunol 17:49–59

    PubMed  CAS  Google Scholar 

  • Bhinge A, Namboori SC, Zhang X, VanDongen AMJ, Stanton LW (2017) Genetic Correction of SOD1 Mutant iPSCs Reveals ERK and JNK Activated AP1 as a Driver of Neurodegeneration in Amyotrophic Lateral Sclerosis. Stem Cell Reports 8:856–869

    PubMed  PubMed Central  CAS  Google Scholar 

  • Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E, Pastores GM, Rubinsztein DC, Nixon RA, Duchen MR, Mallucci GR, Kroemer G, Levine B, Eskelinen EL, Mochel F, Spedding M, Louis C, Martin OR, Millan MJ (2018) Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 17:660–688

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bolukbasi MF, Gupta A, Wolfe SA (2016) Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery. Nat Methods 13:41–50

    PubMed  CAS  Google Scholar 

  • Breinig M, Schweitzer AY, Herianto AM, Revia S, Schaefer L, Wendler L, Cobos Galvez A, Tschaharganeh DF (2019) Multiplexed orthogonal genome editing and transcriptional activation by Cas12a. Nat Methods 16:51–54

    PubMed  CAS  Google Scholar 

  • Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K, Thomas BC, Doudna JA, Banfield JF (2017) New CRISPR-Cas systems from uncultivated microbes. Nature 542:237–241

    PubMed  CAS  Google Scholar 

  • Cameron P et al (2017) Mapping the genomic landscape of CRISPR-Cas9 cleavage. Nat Methods 14:600–606

    PubMed  CAS  Google Scholar 

  • Cao J, Hou J, Ping J, Cai D (2018) Advances in developing novel therapeutic strategies for Alzheimer's disease. Mol Neurodegener 13:64. https://doi.org/10.1186/s13024-018-0299-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chakrabarti AM, Henser-Brownhill T, Monserrat J, Poetsch AR, Luscombe NM, Scaffidi P (2018) Target-Specific Precision of CRISPR-Mediated Genome Editing. Mol Cell. https://doi.org/10.1016/j.molcel.2018.11.031

    PubMed  PubMed Central  Google Scholar 

  • Chang AN, Liang Z, Dai HQ, Chapdelaine-Williams AM, Andrews N, Bronson RT, Schwer B, Alt FW (2018) Neural blastocyst complementation enables mouse forebrain organogenesis. Nature 563:126–130

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chatterjee P, Jakimo N, Jacobson JM (2018) Minimal PAM specificity of a highly similar SpCas9 ortholog. Sci Adv 4:eaau0766

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y, Singh Dolt K, Kriek M, Baker T, Downey P, Drummond NJ, Canham MA, Natalwala A, Rosser S, Kunath T (2018) Engineering synucleinopathy-resistant human dopaminergic neurons by CRISPR-mediated deletion of the SNCA gene. Eur J Neurosci. https://doi.org/10.1111/ejn.14286

    Google Scholar 

  • Cheng M, Jin X, Mu L, Wang F, Li W, Zhong X, Liu X, Shen W, Liu Y, Zhou Y (2016) Combination of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 technique with the piggybac transposon system for mouse in utero electroporation to study cortical development. J Neurosci Res 94:814–824

    PubMed  CAS  Google Scholar 

  • Cheng-Hathaway PJ, Reed-Geaghan EG, Jay TR, Casali BT, Bemiller SM, Puntambekar SS, von Saucken VE, Williams RY, Karlo JC, Moutinho M, Xu G, Ransohoff RM, Lamb BT, Landreth GE (2018) The Trem2 R47H variant confers loss-of-function-like phenotypes in Alzheimer's disease. Mol Neurodegener 13:29. https://doi.org/10.1186/s13024-018-0262-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiang TW, le Sage C, Larrieu D, Demir M, Jackson SP (2016) CRISPR-Cas9(D10A) nickase-based genotypic and phenotypic screening to enhance genome editing. Sci Rep 6:24356. https://doi.org/10.1038/srep24356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chitnis T, Weiner HL (2017) CNS inflammation and neurodegeneration. J Clin Invest 127:3577–3587

    PubMed  PubMed Central  Google Scholar 

  • Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24:132–141

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chung CY et al (2013) Identification and rescue of alpha-synuclein toxicity in Parkinson patient-derived neurons. Science 342:983–987

    PubMed  PubMed Central  CAS  Google Scholar 

  • Claes C, Van Den Daele J, Boon R, Schouteden S, Colombo A, Monasor LS, Fiers M, Ordovas L, Nami F, Bohrmann B, Tahirovic S, De Strooper B, Verfaillie CM (2018) Human stem cell-derived monocytes and microglia-like cells reveal impaired amyloid plaque clearance upon heterozygous or homozygous loss of TREM2. Alzheimers Dement. https://doi.org/10.1016/j.jalz.2018.09.006

    Google Scholar 

  • Cohen J (2019) Moratorium for germline editing splits biologists. Science 363:1130–1131

    PubMed  CAS  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    PubMed  PubMed Central  CAS  Google Scholar 

  • Coppola G et al (2012) Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases. Hum Mol Genet 21:3500–3512

    PubMed  PubMed Central  CAS  Google Scholar 

  • Costa AS, Agostini S, Guerini FR, Mancuso R, Zanzottera M, Ripamonti E, Racca V, Nemni R, Clerici M (2017) Modulation of Immune Responses to Herpes Simplex Virus Type 1 by IFNL3 and IRF7 Polymorphisms: A Study in Alzheimer's Disease. J Alzheimers Dis 60:1055–1063

    PubMed  CAS  Google Scholar 

  • Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F (2017) RNA editing with CRISPR-Cas13. Science. https://doi.org/10.1126/science.aaq0180

    PubMed  PubMed Central  CAS  Google Scholar 

  • Craft S, Watson GS (2004) Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol 3:169–178

    PubMed  CAS  Google Scholar 

  • Cromer MK, Vaidyanathan S, Ryan DE, Curry B, Lucas AB, Camarena J, Kaushik M, Hay SR, Martin RM, Steinfeld I, Bak RO, Dever DP, Hendel A, Bruhn L, Porteus MH (2018) Global Transcriptional Response to CRISPR/Cas9-AAV6-Based Genome Editing in CD34(+) Hematopoietic Stem and Progenitor Cells. Mol Ther 26:2431–2442

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cyranoski D (2015) Ethics of embryo editing divides scientists. Nature 519:272

    PubMed  CAS  Google Scholar 

  • Daley GQ, Lovell-Badge R, Steffann J (2019) After the Storm - A Responsible Path for Genome Editing. N Engl J Med 380:897–899

    PubMed  Google Scholar 

  • de Solis CA, Ho A, Holehonnur R, Ploski JE (2016) The Development of a Viral Mediated CRISPR/Cas9 System with Doxycycline Dependent gRNA Expression for Inducible In vitro and In vivo Genome Editing. Front Mol Neurosci 9:70. https://doi.org/10.3389/fnmol.2016.00070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Decker JM, Kruger L, Sydow A, Dennissen FJ, Siskova Z, Mandelkow E, Mandelkow EM (2016) The Tau/A152T mutation, a risk factor for frontotemporal-spectrum disorders, leads to NR2B receptor-mediated excitotoxicity. EMBO Rep 17:552–569

    PubMed  PubMed Central  CAS  Google Scholar 

  • Deneault E et al (2018) Complete Disruption of Autism-Susceptibility Genes by Gene Editing Predominantly Reduces Functional Connectivity of Isogenic Human Neurons. Stem Cell Reports 11:1211–1225

    PubMed  PubMed Central  CAS  Google Scholar 

  • Deneault E, Faheem M, White SH, Rodrigues DC, Sun S, Wei W, Piekna A, Thompson T, Howe JL, Chalil L, Kwan V, Walker S, Pasceri P, Roth FP, Yuen RK, Singh KK, Ellis J, Scherer SW (2019) CNTN5(-)(/+)or EHMT2(-)(/+)human iPSC-derived neurons from individuals with autism develop hyperactive neuronal networks. Elife 8. https://doi.org/10.7554/eLife.40092.

  • di Domenico A, Carola G, Calatayud C, Pons-Espinal M, Munoz JP, Richaud-Patin Y, Fernandez-Carasa I, Gut M, Faella A, Parameswaran J, Soriano J, Ferrer I, Tolosa E, Zorzano A, Cuervo AM, Raya A, Consiglio A (2019) Patient-Specific iPSC-Derived Astrocytes Contribute to Non-Cell-Autonomous Neurodegeneration in Parkinson's Disease. Stem Cell Reports. https://doi.org/10.1016/j.stemcr.2018.12.011

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dickson DW, Heckman MG, Murray ME, Soto AI, Walton RL, Diehl NN, van Gerpen JA, Uitti RJ, Wszolek ZK, Ertekin-Taner N, Knopman DS, Petersen RC, Graff-Radford NR, Boeve BF, Bu G, Ferman TJ, Ross OA (2018) APOE epsilon4 is associated with severity of Lewy body pathology independent of Alzheimer pathology. Neurology 91:e1182–e1195

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dzau VJ, McNutt M, Ramakrishnan V (2019) Academies' action plan for germline editing. Nature 567:175

    PubMed  CAS  Google Scholar 

  • Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK, Rodriguez AS, Mitchell T, Washicosky KJ, Gyorgy B, Breakefield XO, Tanzi RE, Moir RD (2018) Alzheimer's Disease-Associated beta-Amyloid Is Rapidly Seeded by Herpesviridae to Protect against Brain Infection. Neuron 99:56-63 e53.

    PubMed  PubMed Central  Google Scholar 

  • Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10:1116–1121

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fratta P et al. (2018) Mice with endogenous TDP-43 mutations exhibit gain of splicing function and characteristics of amyotrophic lateral sclerosis. EMBO J 37. https://doi.org/10.15252/embj.201798684.

  • Frederiksen HR, Holst B, Ramakrishna S, Muddashetty R, Schmid B, Freude K (2018) Generation of two iPSC lines with either a heterozygous V717I or a heterozygous KM670/671NL mutation in the APP gene. Stem Cell Res 34:101368

    PubMed  Google Scholar 

  • Frock RL, Hu J, Meyers RM, Ho YJ, Kii E, Alt FW (2015) Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol 33:179–186

    PubMed  CAS  Google Scholar 

  • Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fung TC, Olson CA, Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20:145–155

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gaj T, Ojala DS, Ekman FK, Byrne LC, Limsirichai P, Schaffer DV (2017a) In vivo genome editing improves motor function and extends survival in a mouse model of ALS. Sci Adv 3:eaar3952. https://doi.org/10.1126/sciadv.aar3952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaj T, Staahl BT, Rodrigues GMC, Limsirichai P, Ekman FK, Doudna JA, Schaffer DV (2017b) Targeted gene knock-in by homology-directed genome editing using Cas9 ribonucleoprotein and AAV donor delivery. Nucleic Acids Res 45:e98. https://doi.org/10.1093/nar/gkx154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao L, Cox DBT, Yan WX, Manteiga JC, Schneider MW, Yamano T, Nishimasu H, Nureki O, Crosetto N, Zhang F (2017) Engineered Cpf1 variants with altered PAM specificities. Nat Biotechnol 35:789–792

    PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia-Leon JA, Cabrera-Socorro A, Eggermont K, Swijsen A, Terryn J, Fazal R, Nami F, Ordovas L, Quiles A, Lluis F, Serneels L, Wierda K, Sierksma A, Kreir M, Pestana F, Van Damme P, De Strooper B, Thorrez L, Ebneth A, Verfaillie CM (2018) Generation of a human induced pluripotent stem cell-based model for tauopathies combining three microtubule-associated protein TAU mutations which displays several phenotypes linked to neurodegeneration. Alzheimers Dement 14:1261–1280

    PubMed  Google Scholar 

  • Garcia-Reitboeck P, Phillips A, Piers TM, Villegas-Llerena C, Butler M, Mallach A, Rodrigues C, Arber CE, Heslegrave A, Zetterberg H, Neumann H, Neame S, Houlden H, Hardy J, Pocock JM (2018) Human Induced Pluripotent Stem Cell-Derived Microglia-Like Cells Harboring TREM2 Missense Mutations Show Specific Deficits in Phagocytosis. Cell Rep 24:2300–2311

    PubMed  PubMed Central  CAS  Google Scholar 

  • Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71

    PubMed  CAS  Google Scholar 

  • Garza JC, Qi X, Gjeluci K, Leussis MP, Basu H, Reis SA, Zhao WN, Piguel NH, Penzes P, Haggarty SJ, Martens GJ, Poelmans G, Petryshen TL (2018) Disruption of the psychiatric risk gene Ankyrin 3 enhances microtubule dynamics through GSK3/CRMP2 signaling. Transl Psychiatry 8:135. https://doi.org/10.1038/s41398-018-0182-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gentil BJ, O'Ferrall E, Chalk C, Santana LF, Durham HD, Massie R (2017) A New Mutation in FIG4 Causes a Severe Form of CMT4J Involving TRPV4 in the Pathogenic Cascade. J Neuropathol Exp Neurol 76:789–799

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gessler DJ, Li D, Xu H, Su Q, Sanmiguel J, Tuncer S, Moore C, King J, Matalon R, Gao G (2017) Redirecting N-acetylaspartate metabolism in the central nervous system normalizes myelination and rescues Canavan disease. JCI Insight 2:e90807. https://doi.org/10.1172/jci.insight.90807

    Article  PubMed  PubMed Central  Google Scholar 

  • Giaime E, Tong Y, Wagner LK, Yuan Y, Huang G, Shen J (2017) Age-Dependent Dopaminergic Neurodegeneration and Impairment of the Autophagy-Lysosomal Pathway in LRRK-Deficient Mice. Neuron 96:796-807 e796.

    PubMed  PubMed Central  Google Scholar 

  • Goedert M, Jakes R, Spillantini MG, Hasegawa M, Smith MJ, Crowther RA (1996) Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383:550–553

    PubMed  CAS  Google Scholar 

  • Gonatopoulos-Pournatzis T, Wu M, Braunschweig U, Roth J, Han H, Best AJ, Raj B, Aregger M, O'Hanlon D, Ellis JD, Calarco JA, Moffat J, Gingras AC, Blencowe BJ (2018) Genome-wide CRISPR-Cas9 Interrogation of Splicing Networks Reveals a Mechanism for Recognition of Autism-Misregulated Neuronal Microexons. Mol Cell 72:510-524 e512.

    PubMed  Google Scholar 

  • Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F (2018) Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360:439–444

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gopalappa R, Suresh B, Ramakrishna S, Kim HH (2018) Paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption. Nucleic Acids Res 46:e71. https://doi.org/10.1093/nar/gky222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gordon R, Albornoz EA, Christie DC, Langley MR, Kumar V, Mantovani S, Robertson AAB, Butler MS, Rowe DB, O'Neill LA, Kanthasamy AG, Schroder K, Cooper MA, Woodruff TM (2018) Inflammasome inhibition prevents alpha-synuclein pathology and dopaminergic neurodegeneration in mice. Sci Transl Med 10. https://doi.org/10.1126/scitranslmed.aah4066

    PubMed  PubMed Central  Google Scholar 

  • Guerreiro R et al (2018) Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurol 17:64–74

    PubMed  Google Scholar 

  • Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32:577–582

    PubMed  PubMed Central  CAS  Google Scholar 

  • Guo W et al (2017) HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nat Commun 8:861. https://doi.org/10.1038/s41467-017-00911-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gyorgy B, Loov C, Zaborowski MP, Takeda S, Kleinstiver BP, Commins C, Kastanenka K, Mu D, Volak A, Giedraitis V, Lannfelt L, Maguire CA, Joung JK, Hyman BT, Breakefield XO, Ingelsson M (2018) CRISPR/Cas9 Mediated Disruption of the Swedish APP Allele as a Therapeutic Approach for Early-Onset Alzheimer's Disease. Mol Ther Nucleic Acids 11:429–440

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hallmann, AL, Arauzo-Bravo, MJ, Mavrommatis, L, Ehrlich, M, Ropke, A, Brockhaus, J, Missler, M, Sterneckert, J, Scholer, HR, Kuhlmann, T, Zaehres, H, Hargus, G (2017) Astrocyte pathology in a human neural stem cell model of frontotemporal dementia caused by mutant TAU protein. Sci Rep 7:42991. https://doi.org/10.1038/srep42991

  • Haney MS et al (2018) Identification of phagocytosis regulators using magnetic genome-wide CRISPR screens. Nat Genet 50:1716–1727

    PubMed  PubMed Central  CAS  Google Scholar 

  • Harold D et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet 41:1088–1093

    PubMed  PubMed Central  CAS  Google Scholar 

  • Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA (2018) Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362:839–842

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hautbergue GM et al (2017) SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits. Nat Commun 8:16063. https://doi.org/10.1038/ncomms16063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heman-Ackah SM, Bassett AR, Wood MJ (2016) Precision Modulation of Neurodegenerative Disease-Related Gene Expression in Human iPSC-Derived Neurons. Sci Rep 6:28420

    PubMed  PubMed Central  CAS  Google Scholar 

  • Heman-Ackah SM, Manzano R, Hoozemans JJM, Scheper W, Flynn R, Haerty W, Cowley SA, Bassett AR, Wood MJA (2017) Alpha-synuclein induces the unfolded protein response in Parkinson's disease SNCA triplication iPSC-derived neurons. Hum Mol Genet 26:4441–4450

    PubMed  PubMed Central  CAS  Google Scholar 

  • Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT (2013) NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493:674–678

    PubMed  CAS  Google Scholar 

  • Hirano H, Gootenberg JS, Horii T, Abudayyeh OO, Kimura M, Hsu PD, Nakane T, Ishitani R, Hatada I, Zhang F, Nishimasu H, Nureki O (2016) Structure and Engineering of Francisella novicida Cas9. Cell 164:950–961

    PubMed  PubMed Central  CAS  Google Scholar 

  • Holmes BB, DeVos SL, Kfoury N, Li M, Jacks R, Yanamandra K, Ouidja MO, Brodsky FM, Marasa J, Bagchi DP, Kotzbauer PT, Miller TM, Papy-Garcia D, Diamond MI (2013) Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc Natl Acad Sci U S A 110:E3138–E3147

    PubMed  PubMed Central  CAS  Google Scholar 

  • Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    PubMed  CAS  Google Scholar 

  • Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR (2018a) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57–63

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hu S, Knowlton RC, Watson BO, Glanowska KM, Murphy GG, Parent JM, Wang Y (2018b) Somatic Depdc5 deletion recapitulates electroclinical features of human focal cortical dysplasia type IIA. Ann Neurol 84:140–146

    PubMed  PubMed Central  CAS  Google Scholar 

  • Huang YA, Zhou B, Wernig M, Sudhof TC (2017) ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP Transcription and Abeta Secretion. Cell 168:427-441 e421.

    PubMed  PubMed Central  Google Scholar 

  • Hughes J, Dawson R, Tea M, McAninch D, Piltz S, Jackson D, Stewart L, Ricos MG, Dibbens LM, Harvey NL, Thomas P (2017) Knockout of the epilepsy gene Depdc5 in mice causes severe embryonic dysmorphology with hyperactivity of mTORC1 signalling. Sci Rep 7:12618

    PubMed  PubMed Central  Google Scholar 

  • Hung COY, Livesey FJ (2018) Altered gamma-Secretase Processing of APP Disrupts Lysosome and Autophagosome Function in Monogenic Alzheimer's Disease. Cell Rep 25:3647-3660 e3642.

  • Imamura K, Sahara N, Kanaan NM, Tsukita K, Kondo T, Kutoku Y, Ohsawa Y, Sunada Y, Kawakami K, Hotta A, Yawata S, Watanabe D, Hasegawa M, Trojanowski JQ, Lee VM, Suhara T, Higuchi M, Inoue H (2016) Calcium dysregulation contributes to neurodegeneration in FTLD patient iPSC-derived neurons. Sci Rep 6:34904. https://doi.org/10.1038/srep34904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inoue K, Oliveira LMA, Abeliovich A (2017) CRISPR Transcriptional Activation Analysis Unmasks an Occult gamma-Secretase Processivity Defect in Familial Alzheimer's Disease Skin Fibroblasts. Cell Rep 21:1727–1736

    PubMed  PubMed Central  CAS  Google Scholar 

  • Inoue N, Ogura S, Kasai A, Nakazawa T, Ikeda K, Higashi S, Isotani A, Baba K, Mochizuki H, Fujimura H, Ago Y, Hayata-Takano A, Seiriki K, Shintani Y, Shintani N, Hashimoto H (2018) Knockdown of the mitochondria-localized protein p13 protects against experimental parkinsonism. EMBO Rep 19. https://doi.org/10.15252/embr.201744860.

  • Jiang S, Wen N, Li Z, Dube U, Del Aguila J, Budde J, Martinez R, Hsu S, Fernandez MV, Cairns NJ, Dominantly Inherited Alzheimer N, International FTDGC, Harari O, Cruchaga C, Karch CM (2018) Integrative system biology analyses of CRISPR-edited iPSC-derived neurons and human brains reveal deficiencies of presynaptic signaling in FTLD and PSP. Transl Psychiatry 8:265. https://doi.org/10.1038/s41398-018-0319-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jo A, Ham S, Lee GH, Lee YI, Kim S, Lee YS, Shin JH, Lee Y (2015) Efficient Mitochondrial Genome Editing by CRISPR/Cas9. Biomed Res Int 2015:305716. https://doi.org/10.1155/2015/305716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaczmarczyk L, Mende Y, Zevnik B, Jackson WS (2016) Manipulating the Prion Protein Gene Sequence and Expression Levels with CRISPR/Cas9. PLoS One 11:e0154604

    PubMed  PubMed Central  Google Scholar 

  • Kaeser SA, Herzig MC, Coomaraswamy J, Kilger E, Selenica ML, Winkler DT, Staufenbiel M, Levy E, Grubb A, Jucker M (2007) Cystatin C modulates cerebral beta-amyloidosis. Nat Genet 39:1437–1439

    PubMed  CAS  Google Scholar 

  • Kalebic N, Taverna E, Tavano S, Wong FK, Suchold D, Winkler S, Huttner WB, Sarov M (2016) CRISPR/Cas9-induced disruption of gene expression in mouse embryonic brain and single neural stem cells in vivo. EMBO Rep 17:338–348

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kalhor R, Mali P, Church GM (2017) Rapidly evolving homing CRISPR barcodes. Nat Methods 14:195–200

    PubMed  CAS  Google Scholar 

  • Kalhor R, Kalhor K, Mejia L, Leeper K, Graveline A, Mali P, Church GM (2018) Developmental barcoding of whole mouse via homing CRISPR. Science 361. https://doi.org/10.1126/science.aat9804

    PubMed  PubMed Central  Google Scholar 

  • Kandimalla R, Thirumala V, Reddy PH (2017) Is Alzheimer's disease a Type 3 Diabetes? A critical appraisal. Biochim Biophys Acta 1863:1078–1089

    CAS  Google Scholar 

  • Kantor B, Tagliafierro L, Gu J, Zamora ME, Ilich E, Grenier C, Huang ZY, Murphy S, Chiba-Falek O (2018) Downregulation of SNCA Expression by Targeted Editing of DNA Methylation: A Potential Strategy for Precision Therapy in PD. Mol Ther 26:2638–2649

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kara E, Ling H, Pittman AM, Shaw K, de Silva R, Simone R, Holton JL, Warren JD, Rohrer JD, Xiromerisiou G, Lees A, Hardy J, Houlden H, Revesz T (2012) The MAPT p.A152T variant is a risk factor associated with tauopathies with atypical clinical and neuropathological features. Neurobiol Aging 33:2231 e2237-2231 e2214.

    PubMed  PubMed Central  Google Scholar 

  • Kempuraj D, Khan MM, Thangavel R, Xiong Z, Yang E, Zaheer A (2013) Glia maturation factor induces interleukin-33 release from astrocytes: implications for neurodegenerative diseases. J Neuroimmune Pharmacol 8:643–650

    PubMed  PubMed Central  Google Scholar 

  • Kempuraj D, Thangavel R, Yang E, Pattani S, Zaheer S, Santillan DA, Santillan MK, Zaheer A (2015) Dopaminergic Toxin 1-Methyl-4-Phenylpyridinium, Proteins alpha-Synuclein and Glia Maturation Factor Activate Mast Cells and Release Inflammatory Mediators. PLoS One 10:e0135776

    PubMed  PubMed Central  Google Scholar 

  • Kempuraj D, Selvakumar GP, Zaheer S, Thangavel R, Ahmed ME, Raikwar S, Govindarajan R, Iyer S, Zaheer A (2018a) Cross-Talk between Glia, Neurons and Mast Cells in Neuroinflammation Associated with Parkinson's Disease. J Neuroimmune Pharmacol 13:100–112

    PubMed  Google Scholar 

  • Kempuraj D, Selvakumar GP, Thangavel R, Ahmed ME, Zaheer S, Kumar KK, Yelam A, Kaur H, Dubova I, Raikwar SP, Iyer SS, Zaheer A (2018b) Glia Maturation Factor and Mast Cell-Dependent Expression of Inflammatory Mediators and Proteinase Activated Receptor-2 in Neuroinflammation. J Alzheimers Dis 66:1117–1129

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kempuraj D, Thangavel R, Selvakumar GP, Ahmed ME, Zaheer S, Raikwar SP, Zahoor H, Saeed D, Dubova I, Giler G, Herr S, Iyer SS, Zaheer A (2018c) Mast Cell Proteases Activate Astrocytes and Glia-Neurons and Release Interleukin-33 by Activating p38 and ERK1/2 MAPKs and NF-kappaB. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1177-7

    PubMed  PubMed Central  Google Scholar 

  • Khan MM, Zaheer S, Nehman J, Zaheer A (2014a) Suppression of glia maturation factor expression prevents 1-methyl-4-phenylpyridinium (MPP(+))-induced loss of mesencephalic dopaminergic neurons. Neuroscience 277:196–205

    PubMed  CAS  Google Scholar 

  • Khan MM, Kempuraj D, Zaheer S, Zaheer A (2014b) Glia maturation factor deficiency suppresses 1-methyl-4-phenylpyridinium-induced oxidative stress in astrocytes. J Mol Neurosci 53:590–599

    PubMed  PubMed Central  CAS  Google Scholar 

  • Khan MM, Zaheer S, Thangavel R, Patel M, Kempuraj D, Zaheer A (2015) Absence of glia maturation factor protects dopaminergic neurons and improves motor behavior in mouse model of parkinsonism. Neurochem Res 40:980–990

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kichev A, Eede P, Gressens P, Thornton C, Hagberg H (2017) Implicating Receptor Activator of NF-kappaB (RANK)/RANK Ligand Signalling in Microglial Responses to Toll-Like Receptor Stimuli. Dev Neurosci 39:192–206

    PubMed  CAS  Google Scholar 

  • Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–1019

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kim D, Bae S, Park J, Kim E, Kim S, Yu HR, Hwang J, Kim JI, Kim JS (2015) Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 12:237-243, 231 p following 243.

    PubMed  CAS  Google Scholar 

  • Kim E, Koo T, Park SW, Kim D, Kim K, Cho HY, Song DW, Lee KJ, Jung MH, Kim S, Kim JH, Kim JH, Kim JS (2017) In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun 8:14500. https://doi.org/10.1038/ncomms14500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim S, Yun SP, Lee S, Umanah GE, Bandaru VVR, Yin X, Rhee P, Karuppagounder SS, Kwon SH, Lee H, Mao X, Kim D, Pandey A, Lee G, Dawson VL, Dawson TM, Ko HS (2018) GBA1 deficiency negatively affects physiological alpha-synuclein tetramers and related multimers. Proc Natl Acad Sci U S A 115:798–803

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kleinberger G, Brendel M, Mracsko E, Wefers B, Groeneweg L, Xiang X, Focke C, Deussing M, Suarez-Calvet M, Mazaheri F, Parhizkar S, Pettkus N, Wurst W, Feederle R, Bartenstein P, Mueggler T, Arzberger T, Knuesel I, Rominger A, Haass C (2017) The FTD-like syndrome causing TREM2 T66M mutation impairs microglia function, brain perfusion, and glucose metabolism. EMBO J 36:1837–1853

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, Zheng Z, Joung JK (2015a) Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol 33:1293–1298

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, Aryee MJ, Joung JK (2015b) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–485

    PubMed  PubMed Central  Google Scholar 

  • Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kolli N, Lu M, Maiti P, Rossignol J, Dunbar GL (2017) CRISPR-Cas9 Mediated Gene-Silencing of the Mutant Huntingtin Gene in an In Vitro Model of Huntington's Disease. Int J Mol Sci 18. https://doi.org/10.3390/ijms18040754.

    PubMed Central  Google Scholar 

  • Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424

    PubMed  PubMed Central  CAS  Google Scholar 

  • Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD (2018) Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell 173:665-676 e614.

    PubMed  PubMed Central  Google Scholar 

  • Kramer NJ, Haney MS, Morgens DW, Jovicic A, Couthouis J, Li A, Ousey J, Ma R, Bieri G, Tsui CK, Shi Y, Hertz NT, Tessier-Lavigne M, Ichida JK, Bassik MC, Gitler AD (2018) CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity. Nat Genet 50:603–612

    PubMed  PubMed Central  CAS  Google Scholar 

  • Krasemann S et al. (2017) The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity 47:566-581 e569.

    PubMed  PubMed Central  Google Scholar 

  • Krauthausen M, Kummer MP, Zimmermann J, Reyes-Irisarri E, Terwel D, Bulic B, Heneka MT, Muller M (2015) CXCR3 promotes plaque formation and behavioral deficits in an Alzheimer's disease model. J Clin Invest 125:365–378

    PubMed  Google Scholar 

  • Kristen H, Sastre I, Munoz-Galdeano T, Recuero M, Aldudo J, Bullido MJ (2018) The lysosome system is severely impaired in a cellular model of neurodegeneration induced by HSV-1 and oxidative stress. Neurobiol Aging 68:5–17

    PubMed  CAS  Google Scholar 

  • Kuliyev E, Gingras S, Guy CS, Howell S, Vogel P, Pelletier S (2018) Overlapping Role of SCYL1 and SCYL3 in Maintaining Motor Neuron Viability. J Neurosci. https://doi.org/10.1523/JNEUROSCI.2282-17.2018.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar DK, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, Lefkowitz A, McColl G, Goldstein LE, Tanzi RE, Moir RD (2016) Amyloid-beta peptide protects against microbial infection in mouse and worm models of Alzheimer's disease. Sci Transl Med 8:340ra372. https://doi.org/10.1126/scitranslmed.aaf1059.

    PubMed  Google Scholar 

  • Kumar N, Stanford W, de Solis C, Aradhana AND, Dao TJ, Thaseen S, Sairavi A, Gonzalez CU, Ploski JE (2018) The Development of an AAV-Based CRISPR SaCas9 Genome Editing System That Can Be Delivered to Neurons in vivo and Regulated via Doxycycline and Cre-Recombinase. Front Mol Neurosci 11:413. https://doi.org/10.3389/fnmol.2018.00413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Labbe C et al (2015) Role for the microtubule-associated protein tau variant p.A152T in risk of alpha-synucleinopathies. Neurology 85:1680–1686

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lagier-Tourenne C et al (2012) Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat Neurosci 15:1488–1497

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lall D, Baloh RH (2017) Microglia and C9orf72 in neuroinflammation and ALS and frontotemporal dementia. J Clin Invest 127:3250–3258

    PubMed  PubMed Central  Google Scholar 

  • Lambert JC et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet 41:1094–1099

    PubMed  CAS  Google Scholar 

  • Lander ES, Baylis F, Zhang F, Charpentier E, Berg P, Bourgain C, Friedrich B, Joung JK, Li J, Liu D, Naldini L, Nie JB, Qiu R, Schoene-Seifert B, Shao F, Terry S, Wei W, Winnacker EL (2019) Adopt a moratorium on heritable genome editing. Nature 567:165–168

    PubMed  CAS  Google Scholar 

  • Langley MR, Ghaisas S, Ay M, Luo J, Palanisamy BN, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG (2017) Manganese exposure exacerbates progressive motor deficits and neurodegeneration in the MitoPark mouse model of Parkinson's disease: Relevance to gene and environment interactions in metal neurotoxicity. Neurotoxicology. https://doi.org/10.1016/j.neuro.2017.06.002

    PubMed  CAS  Google Scholar 

  • Lazic D, Sagare AP, Nikolakopoulou AM, Griffin JH, Vassar R, Zlokovic BV (2019) 3K3A-activated protein C blocks amyloidogenic BACE1 pathway and improves functional outcome in mice. J Exp Med. https://doi.org/10.1084/jem.20181035

    CAS  Google Scholar 

  • Lazzarotto CR, Nguyen NT, Tang X, Malagon-Lopez J, Guo JA, Aryee MJ, Joung JK, Tsai SQ (2018) Defining CRISPR-Cas9 genome-wide nuclease activities with CIRCLE-seq. Nat Protoc 13:2615–2642

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lee CM, Cradick TJ, Bao G (2016) The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells. Mol Ther 24:645–654

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lee JK, Jeong E, Lee J, Jung M, Shin E, Kim YH, Lee K, Jung I, Kim D, Kim S, Kim JS (2018a) Directed evolution of CRISPR-Cas9 to increase its specificity. Nat Commun 9:3048. https://doi.org/10.1038/s41467-018-05477-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee MH, Siddoway B, Kaeser GE, Segota I, Rivera R, Romanow WJ, Liu CS, Park C, Kennedy G, Long T, Chun J (2018b) Somatic APP gene recombination in Alzheimer's disease and normal neurons. Nature 563:639–645

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li M, Zhao H, Ananiev GE, Musser MT, Ness KH, Maglaque DL, Saha K, Bhattacharyya A, Zhao X (2017) Establishment of Reporter Lines for Detecting Fragile X Mental Retardation (FMR1) Gene Reactivation in Human Neural Cells. Stem Cells 35:158–169

    PubMed  CAS  Google Scholar 

  • Li L, Roh JH, Chang EH, Lee Y, Lee S, Kim M, Koh W, Chang JW, Kim HJ, Nakanishi M, Barker RA, Na DL, Song J (2018) iPSC Modeling of Presenilin1 Mutation in Alzheimer's Disease with Cerebellar Ataxia. Exp Neurobiol 27:350–364

    PubMed  PubMed Central  Google Scholar 

  • Lim R, Zaheer A (1991) Structure and function of glia maturation factor beta. Adv Exp Med Biol 296:161–164

    PubMed  CAS  Google Scholar 

  • Lim R, Miller JF, Zaheer A (1989) Purification and characterization of glia maturation factor beta: a growth regulator for neurons and glia. Proc Natl Acad Sci U S A 86:3901–3905

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lim R, Zaheer A, Lane WS (1990) Complete amino acid sequence of bovine glia maturation factor beta. Proc Natl Acad Sci U S A 87:5233–5237

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lin Y, Cradick TJ, Brown MT, Deshmukh H, Ranjan P, Sarode N, Wile BM, Vertino PM, Stewart FJ, Bao G (2014) CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 42:7473–7485

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lin YT et al (2018) APOE4 Causes Widespread Molecular and Cellular Alterations Associated with Alzheimer's Disease Phenotypes in Human iPSC-Derived Brain Cell Types. Neuron. https://doi.org/10.1016/j.neuron.2018.05.008

    PubMed  PubMed Central  Google Scholar 

  • Liu J, Gao C, Chen W, Ma W, Li X, Shi Y, Zhang H, Zhang L, Long Y, Xu H, Guo X, Deng S, Yan X, Yu D, Pan G, Chen Y, Lai L, Liao W, Li Z (2016a) CRISPR/Cas9 facilitates investigation of neural circuit disease using human iPSCs: mechanism of epilepsy caused by an SCN1A loss-of-function mutation. Transl Psychiatry 6:e703. https://doi.org/10.1038/tp.2015.203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Z et al (2016b) Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature 530:98–102

    PubMed  CAS  Google Scholar 

  • Liu Y, Yu C, Daley TP, Wang F, Cao WS, Bhate S, Lin X, Still C 2nd, Liu H, Zhao D, Wang H, Xie XS, Ding S, Wong WH, Wernig M, Qi LS (2018) CRISPR Activation Screens Systematically Identify Factors that Drive Neuronal Fate and Reprogramming. Cell Stem Cell 23(758-771):e758

    Google Scholar 

  • Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KLM, Chuck J, Tan D, Knott GJ, Harrington LB, Al-Shayeb B, Wagner A, Brotzmann J, Staahl BT, Taylor KL, Desmarais J, Nogales E, Doudna JA (2019) CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature. https://doi.org/10.1038/s41586-019-0908-x

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez-Erauskin J et al (2018) ALS/FTD-Linked Mutation in FUS Suppresses Intra-axonal Protein Synthesis and Drives Disease Without Nuclear Loss-of-Function of FUS. Neuron 100(816-830):e817

    Google Scholar 

  • Lu IL, Chen C, Tung CY, Chen HH, Pan JP, Chang CH, Cheng JS, Chen YA, Wang CH, Huang CW, Kang YN, Chang HY, Li LL, Chang KP, Shih YH, Lin CH, Kwan SY, Tsai JW (2018) Identification of genes associated with cortical malformation using a transposon-mediated somatic mutagenesis screen in mice. Nat Commun 9:2498. https://doi.org/10.1038/s41467-018-04880-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Magadan AH, Dupuis ME, Villion M, Moineau S (2012) Cleavage of phage DNA by the Streptococcus thermophilus CRISPR3-Cas system. PLoS One 7:e40913

    PubMed  PubMed Central  CAS  Google Scholar 

  • Malankhanova TB, Malakhova AA, Medvedev SP, Zakian SM (2017) Modern Genome Editing Technologies in Huntington's Disease Research. J Huntingtons Dis 6:19–31

    PubMed  PubMed Central  Google Scholar 

  • Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013a) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833–838

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013b) RNA-guided human genome engineering via Cas9. Science 339:823–826

    PubMed  PubMed Central  CAS  Google Scholar 

  • Malkki H (2016) Huntington disease: Selective deactivation of Huntington disease mutant allele by CRISPR-Cas9 gene editing. Nat Rev Neurol 12:614–615

    PubMed  CAS  Google Scholar 

  • Marthaler AG, Tubsuwan A, Schmid B, Poulsen UB, Engelbrecht AF, Mau-Holzmann UA, Hyttel P, Nielsen TT, Nielsen JE, Holst B (2016a) Generation of an isogenic, gene-corrected control cell line of the spinocerebellar ataxia type 2 patient-derived iPSC line H266. Stem Cell Res 16:202–205

    PubMed  CAS  Google Scholar 

  • Marthaler AG, Schmid B, Tubsuwan A, Poulsen UB, Engelbrecht AF, Mau-Holzmann UA, Hyttel P, Nielsen JE, Nielsen TT, Holst B (2016b) Generation of an isogenic, gene-corrected control cell line of the spinocerebellar ataxia type 2 patient-derived iPSC line H271. Stem Cell Res 16:180–183

    PubMed  CAS  Google Scholar 

  • Marthaler AG, Schmid B, Tubsuwan A, Poulsen UB, Engelbrecht AF, Mau-Holzmann UA, Hyttel P, Nielsen JE, Nielsen TT, Holst B (2016c) Generation of an isogenic, gene-corrected control cell line of the spinocerebellar ataxia type 2 patient-derived iPSC line H196. Stem Cell Res 16:162–165

    PubMed  CAS  Google Scholar 

  • Marzi SJ, Leung SK, Ribarska T, Hannon E, Smith AR, Pishva E, Poschmann J, Moore K, Troakes C, Al-Sarraj S, Beck S, Newman S, Lunnon K, Schalkwyk LC, Mill J (2018) A histone acetylome-wide association study of Alzheimer's disease identifies disease-associated H3K27ac differences in the entorhinal cortex. Nat Neurosci 21:1618–1627

    PubMed  CAS  Google Scholar 

  • May PC, Lampert-Etchells M, Johnson SA, Poirier J, Masters JN, Finch CE (1990) Dynamics of gene expression for a hippocampal glycoprotein elevated in Alzheimer's disease and in response to experimental lesions in rat. Neuron 5:831–839

    PubMed  CAS  Google Scholar 

  • Mehrabian M, Brethour D, MacIsaac S, Kim JK, Gunawardana CG, Wang H, Schmitt-Ulms G (2014) CRISPR-Cas9-based knockout of the prion protein and its effect on the proteome. PLoS One 9:e114594

    PubMed  PubMed Central  Google Scholar 

  • Menzies FM et al (2017) Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities. Neuron 93:1015–1034

    PubMed  CAS  Google Scholar 

  • Merienne N, Vachey G, de Longprez L, Meunier C, Zimmer V, Perriard G, Canales M, Mathias A, Herrgott L, Beltraminelli T, Maulet A, Dequesne T, Pythoud C, Rey M, Pellerin L, Brouillet E, Perrier AL, du Pasquier R, Deglon N (2017) The Self-Inactivating KamiCas9 System for the Editing of CNS Disease Genes. Cell Rep 20:2980–2991

    PubMed  CAS  Google Scholar 

  • Mi W, Pawlik M, Sastre M, Jung SS, Radvinsky DS, Klein AM, Sommer J, Schmidt SD, Nixon RA, Mathews PM, Levy E (2007) Cystatin C inhibits amyloid-beta deposition in Alzheimer's disease mouse models. Nat Genet 39:1440–1442

    PubMed  CAS  Google Scholar 

  • Mikuni T, Nishiyama J, Sun Y, Kamasawa N, Yasuda R (2016) High-Throughput, High-Resolution Mapping of Protein Localization in Mammalian Brain by In Vivo Genome Editing. Cell 165:1803–1817

    PubMed  PubMed Central  CAS  Google Scholar 

  • Minami SS, Min SW, Krabbe G, Wang C, Zhou Y, Asgarov R, Li Y, Martens LH, Elia LP, Ward ME, Mucke L, Farese RV Jr, Gan L (2014) Progranulin protects against amyloid beta deposition and toxicity in Alzheimer's disease mouse models. Nat Med 20:1157–1164

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mohle L, Mattei D, Heimesaat MM, Bereswill S, Fischer A, Alutis M, French T, Hambardzumyan D, Matzinger P, Dunay IR, Wolf SA (2016) Ly6C(hi) Monocytes Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult Hippocampal Neurogenesis. Cell Rep 15:1945–1956

    PubMed  Google Scholar 

  • Moller HD, Lin L, Xiang X, Petersen TS, Huang J, Yang L, Kjeldsen E, Jensen UB, Zhang X, Liu X, Xu X, Wang J, Yang H, Church GM, Bolund L, Regenberg B, Luo Y (2018) CRISPR-C: circularization of genes and chromosome by CRISPR in human cells. Nucleic Acids Res 46:e131. https://doi.org/10.1093/nar/gky767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montagna C, Petris G, Casini A, Maule G, Franceschini GM, Zanella I, Conti L, Arnoldi F, Burrone OR, Zentilin L, Zacchigna S, Giacca M, Cereseto A (2018) VSV-G-Enveloped Vesicles for Traceless Delivery of CRISPR-Cas9. Mol Ther Nucleic Acids 12:453–462

    PubMed  PubMed Central  CAS  Google Scholar 

  • Monteys AM, Ebanks SA, Keiser MS, Davidson BL (2017) CRISPR/Cas9 Editing of the Mutant Huntingtin Allele In Vitro and In Vivo. Mol Ther 25:12–23

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mor DE, Tsika E, Mazzulli JR, Gould NS, Kim H, Daniels MJ, Doshi S, Gupta P, Grossman JL, Tan VX, Kalb RG, Caldwell KA, Caldwell GA, Wolfe JH, Ischiropoulos H (2017) Dopamine induces soluble alpha-synuclein oligomers and nigrostriatal degeneration. Nat Neurosci 20:1560–1568

    PubMed  PubMed Central  CAS  Google Scholar 

  • Moreno CL, Della Guardia L, Shnyder V, Ortiz-Virumbrales M, Kruglikov I, Zhang B, Schadt EE, Tanzi RE, Noggle S, Buettner C, Gandy S (2018) iPSC-derived familial Alzheimer's PSEN2 (N141I) cholinergic neurons exhibit mutation-dependent molecular pathology corrected by insulin signaling. Mol Neurodegener 13:33

    PubMed  PubMed Central  Google Scholar 

  • Moreno-Gonzalez I, Edwards Iii G, Salvadores N, Shahnawaz M, Diaz-Espinoza R, Soto C (2017) Molecular interaction between type 2 diabetes and Alzheimer's disease through cross-seeding of protein misfolding. Mol Psychiatry 22:1327–1334

    PubMed  PubMed Central  CAS  Google Scholar 

  • Myhrvold C et al (2018) Field-deployable viral diagnostics using CRISPR-Cas13. Science 360:444–448

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nagata K, Takahashi M, Matsuba Y, Okuyama-Uchimura F, Sato K, Hashimoto S, Saito T, Saido TC (2018) Generation of App knock-in mice reveals deletion mutations protective against Alzheimer's disease-like pathology. Nat Commun 9:1800. https://doi.org/10.1038/s41467-018-04238-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nelles DA, Fang MY, O'Connell MR, Xu JL, Markmiller SJ, Doudna JA, Yeo GW (2016) Programmable RNA Tracking in Live Cells with CRISPR/Cas9. Cell 165:488–496

    PubMed  PubMed Central  CAS  Google Scholar 

  • Neuner SM, Heuer SE, Huentelman MJ, O'Connell KMS, Kaczorowski CC (2018) Harnessing Genetic Complexity to Enhance Translatability of Alzheimer's Disease Mouse Models: A Path toward Precision Medicine. Neuron. https://doi.org/10.1016/j.neuron.2018.11.040

    PubMed  Google Scholar 

  • Nguyen AD, Nguyen TA, Zhang J, Devireddy S, Zhou P, Karydas AM, Xu X, Miller BL, Rigo F, Ferguson SM, Huang EJ, Walther TC, Farese RV Jr (2018) Murine knockin model for progranulin-deficient frontotemporal dementia with nonsense-mediated mRNA decay. Proc Natl Acad Sci U S A 115:E2849–E2858

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY, Shimatani Z, Kondo A (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science:353. https://doi.org/10.1126/science.aaf8729

    PubMed  Google Scholar 

  • Nishimasu H et al (2018) Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361:1259–1262

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nishiyama J (2018) Genome editing in the mammalian brain using the CRISPR-Cas system. Neurosci Res. https://doi.org/10.1016/j.neures.2018.07.003

    PubMed  CAS  Google Scholar 

  • Nishiyama J, Mikuni T, Yasuda R (2017) Virus-Mediated Genome Editing via Homology-Directed Repair in Mitotic and Postmitotic Cells in Mammalian Brain. Neuron. https://doi.org/10.1016/j.neuron.2017.10.004

    PubMed  PubMed Central  Google Scholar 

  • Normile D (2018a) For China, a CRISPR first goes too far. Science 362:1091

    PubMed  Google Scholar 

  • Normile D (2018b) Shock greets claim of CRISPR-edited babies. Science 362:978–979

    PubMed  CAS  Google Scholar 

  • Nozawa K, Hayashi A, Motohashi J, Takeo YH, Matsuda K, Yuzaki M (2018) Cellular and Subcellular Localization of Endogenous Neuroligin-1 in the Cerebellum. Cerebellum 17:709–721

    PubMed  CAS  Google Scholar 

  • Obara Y, Imai T, Sato H, Takeda Y, Kato T, Ishii K (2017) Midnolin is a novel regulator of parkin expression and is associated with Parkinson's Disease. Sci Rep 7:5885. https://doi.org/10.1038/s41598-017-05456-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ortiz-Virumbrales M, Moreno CL, Kruglikov I, Marazuela P, Sproul A, Jacob S, Zimmer M, Paull D, Zhang B, Schadt EE, Ehrlich ME, Tanzi RE, Arancio O, Noggle S, Gandy S (2017) CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer's PSEN2 N141I neurons. Acta Neuropathol Commun 5:77. https://doi.org/10.1186/s40478-017-0475-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ouellet DL, Cherif K, Rousseau J, Tremblay JP (2017) Deletion of the GAA repeats from the human frataxin gene using the CRISPR-Cas9 system in YG8R-derived cells and mouse models of Friedreich ataxia. Gene Ther 24:265–274

    PubMed  CAS  Google Scholar 

  • Ouyang S, Xie Y, Xiong Z, Yang Y, Xian Y, Ou Z, Song B, Chen Y, Xie Y, Li H, Sun X (2018) CRISPR/Cas9-Targeted Deletion of Polyglutamine in Spinocerebellar Ataxia Type 3-Derived Induced Pluripotent Stem Cells. Stem Cells Dev 27:756–770

    PubMed  CAS  Google Scholar 

  • Palazon-Riquelme P, Worboys JD, Green J, Valera A, Martin-Sanchez F, Pellegrini C, Brough D, Lopez-Castejon G (2018) USP7 and USP47 deubiquitinases regulate NLRP3 inflammasome activation. EMBO Rep 19. https://doi.org/10.15252/embr.201744766.

  • Park CY, Halevy T, Lee DR, Sung JJ, Lee JS, Yanuka O, Benvenisty N, Kim DW (2015) Reversion of FMR1 Methylation and Silencing by Editing the Triplet Repeats in Fragile X iPSC-Derived Neurons. Cell Rep 13:234–241

    PubMed  CAS  Google Scholar 

  • Park H, Oh J, Shim G, Cho B, Chang Y, Kim S, Baek S, Kim H, Shin J, Choi H, Yoo J, Kim J, Jun W, Lee M, Lengner CJ, Oh YK, Kim J (2019) In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer's disease. Nat Neurosci. https://doi.org/10.1038/s41593-019-0352-0

    PubMed  CAS  Google Scholar 

  • Pascual-Caro C, Berrocal M, Lopez-Guerrero AM, Alvarez-Barrientos A, Pozo-Guisado E, Gutierrez-Merino C, Mata AM, Martin-Romero FJ (2018) STIM1 deficiency is linked to Alzheimer's disease and triggers cell death in SH-SY5Y cells by upregulation of L-type voltage-operated Ca(2+) entry. J Mol Med (Berl) 96:1061–1079

    CAS  Google Scholar 

  • Petersen MA et al (2017) Fibrinogen Activates BMP Signaling in Oligodendrocyte Progenitor Cells and Inhibits Remyelination after Vascular Damage. Neuron. https://doi.org/10.1016/j.neuron.2017.10.008

    PubMed  PubMed Central  Google Scholar 

  • Pinto BS, Saxena T, Oliveira R, Mendez-Gomez HR, Cleary JD, Denes LT, McConnell O, Arboleda J, Xia G, Swanson MS, Wang ET (2017) Impeding Transcription of Expanded Microsatellite Repeats by Deactivated Cas9. Mol Cell 68(479-490):e475

    Google Scholar 

  • Platt RJ, Zhou Y, Slaymaker IM, Shetty AS, Weisbach NR, Kim JA, Sharma J, Desai M, Sood S, Kempton HR, Crabtree GR, Feng G, Zhang F (2017) Chd8 Mutation Leads to Autistic-like Behaviors and Impaired Striatal Circuits. Cell Rep 19:335–350

    PubMed  PubMed Central  CAS  Google Scholar 

  • Potting C, Crochemore C, Moretti F, Nigsch F, Schmidt I, Manneville C, Carbone W, Knehr J, DeJesus R, Lindeman A, Maher R, Russ C, McAllister G, Reece-Hoyes JS, Hoffman GR, Roma G, Muller M, Sailer AW, Helliwell SB (2018) Genome-wide CRISPR screen for PARKIN regulators reveals transcriptional repression as a determinant of mitophagy. Proc Natl Acad Sci U S A 115:E180–E189

    CAS  PubMed  Google Scholar 

  • Prasuhn J, Martensson CU, Krajka V, Klein C, Rakovic A (2017) Genome-Edited, TH-expressing Neuroblastoma Cells as a Disease Model for Dopamine-Related Disorders: A Proof-of-Concept Study on DJ-1-deficient Parkinsonism. Front Cell Neurosci 11:426. https://doi.org/10.3389/fncel.2017.00426

    Article  PubMed  CAS  Google Scholar 

  • Pugazhenthi S, Qin L, Reddy PH (2017) Common neurodegenerative pathways in obesity, diabetes, and Alzheimer's disease. Biochim Biophys Acta 1863:1037–1045

    CAS  Google Scholar 

  • Quadri M et al (2018) LRP10 genetic variants in familial Parkinson's disease and dementia with Lewy bodies: a genome-wide linkage and sequencing study. Lancet Neurol 17:597–608

    PubMed  CAS  Google Scholar 

  • Raas Q, Gondcaille C, Hamon Y, Leoni V, Caccia C, Menetrier F, Lizard G, Trompier D, Savary S (2019) CRISPR/Cas9-mediated knockout of Abcd1 and Abcd2 genes in BV-2 cells: novel microglial models for X-linked Adrenoleukodystrophy. Biochim Biophys Acta Mol Cell Biol Lipids 1864:704–714

    PubMed  CAS  Google Scholar 

  • Raikwar SP, Thangavel R, Dubova I, Selvakumar GP, Ahmed ME, Kempuraj D, Zaheer SA, Iyer SS, Zaheer A (2018) Targeted Gene Editing of Glia Maturation Factor in Microglia: a Novel Alzheimer's Disease Therapeutic Target. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1068-y

    PubMed  PubMed Central  Google Scholar 

  • Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013a) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013b) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rannals MD, Page SC, Campbell MN, Gallo RA, Mayfield B, Maher BJ (2016a) Neurodevelopmental models of transcription factor 4 deficiency converge on a common ion channel as a potential therapeutic target for Pitt Hopkins syndrome. Rare Dis 4:e1220468. https://doi.org/10.1080/21675511.2016.1220468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rannals MD, Hamersky GR, Page SC, Campbell MN, Briley A, Gallo RA, Phan BN, Hyde TM, Kleinman JE, Shin JH, Jaffe AE, Weinberger DR, Maher BJ (2016b) Psychiatric Risk Gene Transcription Factor 4 Regulates Intrinsic Excitability of Prefrontal Neurons via Repression of SCN10a and KCNQ1. Neuron 90:43–55

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353:777–783

    PubMed  CAS  Google Scholar 

  • Readhead B, Haure-Mirande JV, Funk CC, Richards MA, Shannon P, Haroutunian V, Sano M, Liang WS, Beckmann ND, Price ND, Reiman EM, Schadt EE, Ehrlich ME, Gandy S, Dudley JT (2018) Multiscale Analysis of Independent Alzheimer's Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks by Human Herpesvirus. Neuron 99:64-82 e67. https://doi.org/10.1016/j.neuron.2018.05.023.

    PubMed  PubMed Central  Google Scholar 

  • Rees HA, Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19:770–788

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ribierre T, Deleuze C, Bacq A, Baldassari S, Marsan E, Chipaux M, Muraca G, Roussel D, Navarro V, Leguern E, Miles R, Baulac S (2018) Second-hit mosaic mutation in mTORC1 repressor DEPDC5 causes focal cortical dysplasia-associated epilepsy. J Clin Invest 128:2452–2458

    PubMed  PubMed Central  Google Scholar 

  • Rice HC, de Malmazet D, Schreurs A, Frere S, Van Molle I, Volkov AN, Creemers E, Vertkin I, Nys J, Ranaivoson FM, Comoletti D, Savas JN, Remaut H, Balschun D, Wierda KD, Slutsky I, Farrow K, De Strooper B, de Wit J (2019) Secreted amyloid-beta precursor protein functions as a GABABR1a ligand to modulate synaptic transmission. Science 363. https://doi.org/10.1126/science.aao4827.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Richter F, Fonfara I, Bouazza B, Schumacher CH, Bratovic M, Charpentier E, Moglich A (2016) Engineering of temperature- and light-switchable Cas9 variants. Nucleic Acids Res 44:10003–10014

    PubMed  PubMed Central  CAS  Google Scholar 

  • Robbins JP, Perfect L, Ribe EM, Maresca M, Dangla-Valls A, Foster EM, Killick R, Nowosiad P, Reid MJ, Polit LD, Nevado AJ, Ebner D, Bohlooly YM, Buckley N, Pangalos MN, Price J, Lovestone S (2018) Clusterin Is Required for beta-Amyloid Toxicity in Human iPSC-Derived Neurons. Front Neurosci 12:504

    PubMed  PubMed Central  Google Scholar 

  • Rosas-Vidal LE, Lozada-Miranda V, Cantres-Rosario Y, Vega-Medina A, Melendez L, Quirk GJ (2018) Alteration of BDNF in the medial prefrontal cortex and the ventral hippocampus impairs extinction of avoidance. Neuropsychopharmacology 43:2636–2644

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rossidis AC, Stratigis JD, Chadwick AC, Hartman HA, Ahn NJ, Li H, Singh K, Coons BE, Li L, Lv W, Zoltick PW, Alapati D, Zacharias W, Jain R, Morrisey EE, Musunuru K, Peranteau WH (2018) In utero CRISPR-mediated therapeutic editing of metabolic genes. Nat Med 24:1513–1518

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ryu JK et al (2018) Fibrin-targeting immunotherapy protects against neuroinflammation and neurodegeneration. Nat Immunol 19:1212–1223

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sanson KR, Hanna RE, Hegde M, Donovan KF, Strand C, Sullender ME, Vaimberg EW, Goodale A, Root DE, Piccioni F, Doench JG (2018) Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat Commun 9:5416. https://doi.org/10.1038/s41467-018-07901-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasaguri H, Nagata K, Sekiguchi M, Fujioka R, Matsuba Y, Hashimoto S, Sato K, Kurup D, Yokota T, Saido TC (2018) Introduction of pathogenic mutations into the mouse Psen1 gene by Base Editor and Target-AID. Nat Commun 9:2892. https://doi.org/10.1038/s41467-018-05262-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schirer Y, Malishkevich A, Ophir Y, Lewis J, Giladi E, Gozes I (2014) Novel marker for the onset of frontotemporal dementia: early increase in activity-dependent neuroprotective protein (ADNP) in the face of Tau mutation. PLoS One 9:e87383

    PubMed  PubMed Central  Google Scholar 

  • Schmid-Burgk JL, Chauhan D, Schmidt T, Ebert TS, Reinhardt J, Endl E, Hornung V (2016) A Genome-wide CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) Screen Identifies NEK7 as an Essential Component of NLRP3 Inflammasome Activation. J Biol Chem 291:103–109

    PubMed  CAS  Google Scholar 

  • Selvakumar GP, Iyer SS, Kempuraj D, Ahmed ME, Thangavel R, Dubova I, Raikwar SP, Zaheer S, Zaheer A (2018a) Molecular Association of Glia Maturation Factor with the Autophagic Machinery in Rat Dopaminergic Neurons: a Role for Endoplasmic Reticulum Stress and MAPK Activation. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1340-1

    PubMed  PubMed Central  Google Scholar 

  • Selvakumar GP, Iyer SS, Kempuraj D, Raju M, Thangavel R, Saeed D, Ahmed ME, Zahoor H, Raikwar SP, Zaheer S, Zaheer A (2018b) Glia Maturation Factor Dependent Inhibition of Mitochondrial PGC-1alpha Triggers Oxidative Stress-Mediated Apoptosis in N27 Rat Dopaminergic Neuronal Cells. Mol Neurobiol. https://doi.org/10.1007/s12035-018-0882-6

    PubMed  PubMed Central  CAS  Google Scholar 

  • Selvakumar GP, Ahmed ME, Raikwar SP, Thangavel R, Kempuraj D, Dubova I, Saeed D, Zahoor H, Premkumar K, Zaheer S, Iyer S, Zaheer A (2019) CRISPR/Cas9 Editing of Glia Maturation Factor Regulates Mitochondrial Dynamics by Attenuation of the NRF2/HO-1 Dependent Ferritin Activation in Glial Cells. J Neuroimmune Pharmacol. https://doi.org/10.1007/s11481-019-09833-6

    PubMed  PubMed Central  Google Scholar 

  • Selvaraj BT et al (2018) C9ORF72 repeat expansion causes vulnerability of motor neurons to Ca(2+)-permeable AMPA receptor-mediated excitotoxicity. Nat Commun 9:347. https://doi.org/10.1038/s41467-017-02729-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seo J, Kritskiy O, Watson LA, Barker SJ, Dey D, Raja WK, Lin YT, Ko T, Cho S, Penney J, Silva MC, Sheridan SD, Lucente D, Gusella JF, Dickerson BC, Haggarty SJ, Tsai LH (2017) Inhibition of p25/Cdk5 Attenuates Tauopathy in Mouse and iPSC Models of Frontotemporal Dementia. J Neurosci 37:9917–9924

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sepulcre J, Grothe MJ, d'Oleire Uquillas F, Ortiz-Teran L, Diez I, Yang HS, Jacobs HIL, Hanseeuw BJ, Li Q, El-Fakhri G, Sperling RA, Johnson KA (2018) Neurogenetic contributions to amyloid beta and tau spreading in the human cortex. Nat Med 24:1910–1918

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, Wang L, Hodgkins A, Iyer V, Huang X, Skarnes WC (2014) Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 11:399–402

    PubMed  CAS  Google Scholar 

  • Shi CH et al (2018a) Disrupted structure and aberrant function of CHIP mediates the loss of motor and cognitive function in preclinical models of SCAR16. PLoS Genet 14:e1007664

    PubMed  PubMed Central  Google Scholar 

  • Shi Y et al (2018b) Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat Med 24:313–325

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shin JW, Kim KH, Chao MJ, Atwal RS, Gillis T, MacDonald ME, Gusella JF, Lee JM (2016) Permanent inactivation of Huntington's disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet 25:4566–4576

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shinmyo Y, Kawasaki H (2017) CRISPR/Cas9-Mediated Gene Knockout in the Mouse Brain Using In Utero Electroporation. Curr Protoc Neurosci 79:3 32 31-33 32 11.

  • Shinmyo Y, Tanaka S, Tsunoda S, Hosomichi K, Tajima A, Kawasaki H (2016) CRISPR/Cas9-mediated gene knockout in the mouse brain using in utero electroporation. Sci Rep 6:20611. https://doi.org/10.1038/srep20611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shinmyo Y, Terashita Y, Dinh Duong TA, Horiike T, Kawasumi M, Hosomichi K, Tajima A, Kawasaki H (2017) Folding of the Cerebral Cortex Requires Cdk5 in Upper-Layer Neurons in Gyrencephalic Mammals. Cell Rep 20:2131–2143

    PubMed  CAS  Google Scholar 

  • Shinohara M, Sato N (2017) Bidirectional interactions between diabetes and Alzheimer's disease. Neurochem Int 108:296–302

    PubMed  CAS  Google Scholar 

  • Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K, Zhang F, Koonin EV (2015) Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Mol Cell 60:385–397

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shyng C, Nelvagal HR, Dearborn JT, Tyynela J, Schmidt RE, Sands MS, Cooper JD (2017) Synergistic effects of treating the spinal cord and brain in CLN1 disease. Proc Natl Acad Sci U S A 114:E5920–E5929

    PubMed  PubMed Central  CAS  Google Scholar 

  • Silva MC, Cheng C, Mair W, Almeida S, Fong H, Biswas MHU, Zhang Z, Huang Y, Temple S, Coppola G, Geschwind DH, Karydas A, Miller BL, Kosik KS, Gao FB, Steen JA, Haggarty SJ (2016) Human iPSC-Derived Neuronal Model of Tau-A152T Frontotemporal Dementia Reveals Tau-Mediated Mechanisms of Neuronal Vulnerability. Stem Cell Reports 7:325–340

    PubMed  PubMed Central  CAS  Google Scholar 

  • Simhadri VL, McGill J, McMahon S, Wang J, Jiang H, Sauna ZE (2018) Prevalence of Pre-existing Antibodies to CRISPR-Associated Nuclease Cas9 in the USA Population. Mol Ther Methods Clin Dev 10:105–112

    PubMed  PubMed Central  CAS  Google Scholar 

  • Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88

    PubMed  CAS  Google Scholar 

  • Smargon AA, Cox DB, Pyzocha NK, Zheng K, Slaymaker IM, Gootenberg JS, Abudayyeh OA, Essletzbichler P, Shmakov S, Makarova KS, Koonin EV, Zhang F (2017) Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Mol Cell 65:618-630 e617.

    PubMed  PubMed Central  Google Scholar 

  • Sparling DP, Yu J, Kim K, Zhu C, Brachs S, Birkenfeld AL, Pajvani UB (2016) Adipocyte-specific blockade of gamma-secretase, but not inhibition of Notch activity, reduces adipose insulin sensitivity. Mol Metab 5:113–121

    PubMed  CAS  Google Scholar 

  • Staahl BT, Benekareddy M, Coulon-Bainier C, Banfal AA, Floor SN, Sabo JK, Urnes C, Munares GA, Ghosh A, Doudna JA (2017) Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat Biotechnol 35:431–434

    PubMed  PubMed Central  CAS  Google Scholar 

  • Stanley M, Macauley SL, Holtzman DM (2016) Changes in insulin and insulin signaling in Alzheimer's disease: cause or consequence? J Exp Med 213:1375–1385

    PubMed  PubMed Central  CAS  Google Scholar 

  • Steinberg S et al (2015) Loss-of-function variants in ABCA7 confer risk of Alzheimer's disease. Nat Genet 47:445–447

    PubMed  CAS  Google Scholar 

  • Stopschinski BE, Holmes BB, Miller GM, Manon VA, Vaquer-Alicea J, Prueitt WL, Hsieh-Wilson LC, Diamond MI (2018) Specific glycosaminoglycan chain length and sulfation patterns are required for cell uptake of tau versus alpha-synuclein and beta-amyloid aggregates. J Biol Chem 293:10826–10840

    PubMed  PubMed Central  CAS  Google Scholar 

  • Strecker J, Jones S, Koopal B, Schmid-Burgk J, Zetsche B, Gao L, Makarova KS, Koonin EV, Zhang F (2019) Engineering of CRISPR-Cas12b for human genome editing. Nat Commun 10:212. https://doi.org/10.1038/s41467-018-08224-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suarez-Calvet M et al. (2018) CSF progranulin increases in the course of Alzheimer's disease and is associated with sTREM2, neurodegeneration and cognitive decline. EMBO Mol Med 10. https://doi.org/10.15252/emmm.201809712.

  • Sun B, Zhou Y, Halabisky B, Lo I, Cho SH, Mueller-Steiner S, Devidze N, Wang X, Grubb A, Gan L (2008) Cystatin C-cathepsin B axis regulates amyloid beta levels and associated neuronal deficits in an animal model of Alzheimer's disease. Neuron 60:247–257

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sun J, Carlson-Stevermer J, Das U, Shen M, Delenclos M, Snead AM, Koo SY, Wang L, Qiao D, Loi J, Petersen AJ, Stockton M, Bhattacharyya A, Jones MV, Zhao X, McLean PJ, Sproul AA, Saha K, Roy S (2019) CRISPR/Cas9 editing of APP C-terminus attenuates beta-cleavage and promotes alpha-cleavage. Nat Commun 10:53. https://doi.org/10.1038/s41467-018-07971-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sydow A, Hochgrafe K, Konen S, Cadinu D, Matenia D, Petrova O, Joseph M, Dennissen FJ, Mandelkow EM (2016) Age-dependent neuroinflammation and cognitive decline in a novel Ala152Thr-Tau transgenic mouse model of PSP and AD. Acta Neuropathol Commun 4:17. https://doi.org/10.1186/s40478-016-0281-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tagliafierro L, Chiba-Falek O (2016) Up-regulation of SNCA gene expression: implications to synucleinopathies. Neurogenetics 17:145–157

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tchasovnikarova IA, Timms RT, Douse CH, Roberts RC, Dougan G, Kingston RE, Modis Y, Lehner PJ (2017) Hyperactivation of HUSH complex function by Charcot-Marie-Tooth disease mutation in MORC2. Nat Genet 49:1035–1044

    PubMed  PubMed Central  CAS  Google Scholar 

  • Thambisetty M et al (2010) Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch Gen Psychiatry 67:739–748

    PubMed  PubMed Central  Google Scholar 

  • Thangavel R, Stolmeier D, Yang X, Anantharam P, Zaheer A (2012) Expression of glia maturation factor in neuropathological lesions of Alzheimer's disease. Neuropathol Appl Neurobiol 38:572–581

    PubMed  PubMed Central  CAS  Google Scholar 

  • Thangavel R, Kempuraj D, Stolmeier D, Anantharam P, Khan M, Zaheer A (2013) Glia maturation factor expression in entorhinal cortex of Alzheimer's disease brain. Neurochem Res 38:1777–1784

    PubMed  PubMed Central  CAS  Google Scholar 

  • Thangavel R, Kempuraj D, Zaheer S, Raikwar S, Ahmed ME, Selvakumar GP, Iyer SS, Zaheer A (2017) Glia Maturation Factor and Mitochondrial Uncoupling Proteins 2 and 4 Expression in the Temporal Cortex of Alzheimer's Disease Brain. Front Aging Neurosci 9:150. https://doi.org/10.3389/fnagi.2017.00150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thangavel R, Bhagavan SM, Ramaswamy SB, Surpur S, Govindarajan R, Kempuraj D, Zaheer S, Raikwar S, Ahmed ME, Selvakumar GP, Iyer SS, Zaheer A (2018) Co-Expression of Glia Maturation Factor and Apolipoprotein E4 in Alzheimer's Disease Brain. J Alzheimers Dis 61:553–560

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tropak MB, Yonekawa S, Karumuthil-Melethil S, Thompson P, Wakarchuk W, Gray SJ, Walia JS, Mark BL, Mahuran D (2016) Construction of a hybrid beta-hexosaminidase subunit capable of forming stable homodimers that hydrolyze GM2 ganglioside in vivo. Mol Ther Methods Clin Dev 3:15057

    PubMed  PubMed Central  Google Scholar 

  • Trujillo CA, Muotri AR (2018) Brain Organoids and the Study of Neurodevelopment. Trends Mol Med. https://doi.org/10.1016/j.molmed.2018.09.005

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tsai SQ, Joung JK (2016) Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat Rev Genet 17:300–312

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32:569–576

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33:187–197

    PubMed  CAS  Google Scholar 

  • Tsai SQ, Nguyen NT, Malagon-Lopez J, Topkar VV, Aryee MJ, Joung JK (2017) CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat Methods 14:607–614

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tsuang D et al (2013) APOE epsilon4 increases risk for dementia in pure synucleinopathies. JAMA Neurol 70:223–228

    PubMed  PubMed Central  Google Scholar 

  • Tsunekawa Y, Terhune RK, Fujita I, Shitamukai A, Suetsugu T, Matsuzaki F (2016) Developing a de novo targeted knock-in method based on in utero electroporation into the mammalian brain. Development 143:3216–3222

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tulloch J, Leong L, Chen S, Keene CD, Millard SP, Shutes-David A, Lopez OL, Kofler J, Kaye JA, Woltjer R, Nelson PT, Neltner JH, Jicha GA, Galasko D, Masliah E, Leverenz JB, Yu CE, Tsuang D (2018) APOE DNA methylation is altered in Lewy body dementia. Alzheimers Dement 14:889–894

    PubMed  PubMed Central  Google Scholar 

  • Tycko J, Myer VE, Hsu PD (2016) Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity. Mol Cell 63:355–370

    PubMed  PubMed Central  CAS  Google Scholar 

  • Uemura T, Mori T, Kurihara T, Kawase S, Koike R, Satoga M, Cao X, Li X, Yanagawa T, Sakurai T, Shindo T, Tabuchi K (2016) Fluorescent protein tagging of endogenous protein in brain neurons using CRISPR/Cas9-mediated knock-in and in utero electroporation techniques. Sci Rep 6:35861. https://doi.org/10.1038/srep35861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vakulskas CA, Dever DP, Rettig GR, Turk R, Jacobi AM, Collingwood MA, Bode NM, McNeill MS, Yan S, Camarena J, Lee CM, Park SH, Wiebking V, Bak RO, Gomez-Ospina N, Pavel-Dinu M, Sun W, Bao G, Porteus MH, Behlke MA (2018) A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med 24:1216–1224

    PubMed  PubMed Central  CAS  Google Scholar 

  • Valdez C, Wong YC, Schwake M, Bu G, Wszolek ZK, Krainc D (2017) Progranulin-mediated deficiency of cathepsin D results in FTD and NCL-like phenotypes in neurons derived from FTD patients. Hum Mol Genet 26:4861–4872

    PubMed  PubMed Central  CAS  Google Scholar 

  • Vannocci T, Faggianelli N, Zaccagnino S, della Rosa I, Adinolfi S, Pastore A (2015) A new cellular model to follow Friedreich's ataxia development in a time-resolved way. Dis Model Mech 8:711–719

    PubMed  PubMed Central  Google Scholar 

  • Vesikansa A (2018) Unraveling of Central Nervous System Disease Mechanisms Using CRISPR Genome Manipulation. J Cent Nerv Syst Dis. DOI 10:1179573518787469

    Google Scholar 

  • Wang P, Lin M, Pedrosa E, Hrabovsky A, Zhang Z, Guo W, Lachman HM, Zheng D (2015) CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment. Mol Autism 6:55. https://doi.org/10.1186/s13229-015-0048-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang G, Liu X, Gaertig MA, Li S, Li XJ (2016a) Ablation of huntingtin in adult neurons is nondeleterious but its depletion in young mice causes acute pancreatitis. Proc Natl Acad Sci U S A 113:3359–3364

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Cao C, Huang J, Yao J, Hai T, Zheng Q, Wang X, Zhang H, Qin G, Cheng J, Wang Y, Yuan Z, Zhou Q, Wang H, Zhao J (2016b) One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci Rep 6:20620. https://doi.org/10.1038/srep20620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Gu BJ, Masters CL, Wang YJ (2017a) A systemic view of Alzheimer disease - insights from amyloid-beta metabolism beyond the brain. Nat Rev Neurol 13:612–623

    PubMed  CAS  Google Scholar 

  • Wang P, Mokhtari R, Pedrosa E, Kirschenbaum M, Bayrak C, Zheng D, Lachman HM (2017b) CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol Autism 8:11. https://doi.org/10.1186/s13229-017-0124-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang C, Najm R, Xu Q, Jeong DE, Walker D, Balestra ME, Yoon SY, Yuan H, Li G, Miller ZA, Miller BL, Malloy MJ, Huang Y (2018a) Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med 24:647–657

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang H, Guo W, Mitra J, Hegde PM, Vandoorne T, Eckelmann BJ, Mitra S, Tomkinson AE, Van Den Bosch L, Hegde ML (2018b) Mutant FUS causes DNA ligation defects to inhibit oxidative damage repair in Amyotrophic Lateral Sclerosis. Nat Commun 9:3683. https://doi.org/10.1038/s41467-018-06111-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Ji T, Nelson AD, Glanowska K, Murphy GG, Jenkins PM, Parent JM (2018c) Critical roles of alphaII spectrin in brain development and epileptic encephalopathy. J Clin Invest 128:760–773

    PubMed  PubMed Central  Google Scholar 

  • Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    PubMed  CAS  Google Scholar 

  • Wild EJ, Tabrizi SJ (2017) Therapies targeting DNA and RNA in Huntington's disease. Lancet Neurol 16:837–847

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wolinetz CD, Collins FS (2019) NIH supports call for moratorium on clinical uses of germline gene editing. Nature 567:175

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wyvekens N, Topkar VV, Khayter C, Joung JK, Tsai SQ (2015) Dimeric CRISPR RNA-Guided FokI-dCas9 Nucleases Directed by Truncated gRNAs for Highly Specific Genome Editing. Hum Gene Ther 26:425–431

    PubMed  PubMed Central  CAS  Google Scholar 

  • Xiang X, Piers TM, Wefers B, Zhu K, Mallach A, Brunner B, Kleinberger G, Song W, Colonna M, Herms J, Wurst W, Pocock JM, Haass C (2018) The Trem2 R47H Alzheimer's risk variant impairs splicing and reduces Trem2 mRNA and protein in mice but not in humans. Mol Neurodegener 13:49. https://doi.org/10.1186/s13024-018-0280-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie N, Gong H, Suhl JA, Chopra P, Wang T, Warren ST (2016) Reactivation of FMR1 by CRISPR/Cas9-Mediated Deletion of the Expanded CGG-Repeat of the Fragile X Chromosome. PLoS One 11:e0165499

    PubMed  PubMed Central  Google Scholar 

  • Xu X, Tay Y, Sim B, Yoon SI, Huang Y, Ooi J, Utami KH, Ziaei A, Ng B, Radulescu C, Low D, Ng AY, Loh M, Venkatesh B, Ginhoux F, Augustine GJ, Pouladi MA (2017) Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells. Stem Cell Reports 8:619–633

    PubMed  PubMed Central  CAS  Google Scholar 

  • Xu C, Lu Z, Luo Y, Liu Y, Cao Z, Shen S, Li H, Liu J, Chen K, Chen Z, Yang X, Gu Z, Wang J (2018) Targeting of NLRP3 inflammasome with gene editing for the amelioration of inflammatory diseases. Nat Commun 9:4092. https://doi.org/10.1038/s41467-018-06522-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan WX, Mirzazadeh R, Garnerone S, Scott D, Schneider MW, Kallas T, Custodio J, Wernersson E, Li Y, Gao L, Federova Y, Zetsche B, Zhang F, Bienko M, Crosetto N (2017) BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks. Nat Commun 8:15058. https://doi.org/10.1038/ncomms15058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan WX, Chong S, Zhang H, Makarova KS, Koonin EV, Cheng DR, Scott DA (2018) Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein. Mol Cell 70:327-339 e325.

    PubMed  PubMed Central  Google Scholar 

  • Yang S, Chang R, Yang H, Zhao T, Hong Y, Kong HE, Sun X, Qin Z, Jin P, Li S, Li XJ (2017) CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington's disease. J Clin Invest 127:2719–2724

    PubMed  PubMed Central  Google Scholar 

  • Yao X, Liu X, Zhang Y, Li Y, Zhao C, Yao S, Wei Y (2017) Gene Therapy of Adult Neuronal Ceroid Lipofuscinoses with CRISPR/Cas9 in Zebrafish. Hum Gene Ther 28:588–597

    PubMed  CAS  Google Scholar 

  • Yeh FL, Wang Y, Tom I, Gonzalez LC, Sheng M (2016) TREM2 Binds to Apolipoproteins, Including APOE and CLU/APOJ, and Thereby Facilitates Uptake of Amyloid-Beta by Microglia. Neuron 91:328–340

    PubMed  CAS  Google Scholar 

  • Young JE, Boulanger-Weill J, Williams DA, Woodruff G, Buen F, Revilla AC, Herrera C, Israel MA, Yuan SH, Edland SD, Goldstein LS (2015) Elucidating molecular phenotypes caused by the SORL1 Alzheimer's disease genetic risk factor using human induced pluripotent stem cells. Cell Stem Cell 16:373–385

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zafra MP, Schatoff EM, Katti A, Foronda M, Breinig M, Schweitzer AY, Simon A, Han T, Goswami S, Montgomery E, Thibado J, Kastenhuber ER, Sanchez-Rivera FJ, Shi J, Vakoc CR, Lowe SW, Tschaharganeh DF, Dow LE (2018) Optimized base editors enable efficient editing in cells, organoids and mice. Nat Biotechnol. https://doi.org/10.1038/nbt.4194

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zaheer A, Yorek MA, Lim R (2001) Effects of glia maturation factor overexpression in primary astrocytes on MAP kinase activation, transcription factor activation, and neurotrophin secretion. Neurochem Res 26:1293–1299

    PubMed  CAS  Google Scholar 

  • Zaheer A, Mathur SN, Lim R (2002) Overexpression of glia maturation factor in astrocytes leads to immune activation of microglia through secretion of granulocyte-macrophage-colony stimulating factor. Biochem Biophys Res Commun 294:238–244

    PubMed  CAS  Google Scholar 

  • Zaheer A, Zaheer S, Sahu SK, Knight S, Khosravi H, Mathur SN, Lim R (2007a) A novel role of glia maturation factor: induction of granulocyte-macrophage colony-stimulating factor and pro-inflammatory cytokines. J Neurochem 101:364–376

    PubMed  CAS  Google Scholar 

  • Zaheer S, Wu Y, Bassett J, Yang B, Zaheer A (2007b) Glia maturation factor regulation of STAT expression: a novel mechanism in experimental autoimmune encephalomyelitis. Neurochem Res 32:2123–2131

    CAS  PubMed  Google Scholar 

  • Zaheer A, Zaheer S, Thangavel R, Wu Y, Sahu SK, Yang B (2008) Glia maturation factor modulates beta-amyloid-induced glial activation, inflammatory cytokine/chemokine production and neuronal damage. Brain Res 1208:192–203

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zaheer S, Thangavel R, Sahu SK, Zaheer A (2011) Augmented expression of glia maturation factor in Alzheimer's disease. Neuroscience 194:227–233

    PubMed  CAS  Google Scholar 

  • Zaheer S, Thangavel R, Wu Y, Khan MM, Kempuraj D, Zaheer A (2013) Enhanced expression of glia maturation factor correlates with glial activation in the brain of triple transgenic Alzheimer's disease mice. Neurochem Res 38:218–225

    PubMed  CAS  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Schmid B, Nielsen TT, Nielsen JE, Clausen C, Hyttel P, Holst B, Freude KK (2016) Generation of a human induced pluripotent stem cell line via CRISPR-Cas9 mediated integration of a site-specific heterozygous mutation in CHMP2B. Stem Cell Res 17:148–150

    PubMed  CAS  Google Scholar 

  • Zhang Y et al (2017) Patient iPSC-Derived Neurons for Disease Modeling of Frontotemporal Dementia with Mutation in CHMP2B. Stem Cell Reports 8:648–658

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou X, Xin J, Fan N, Zou Q, Huang J, Ouyang Z, Zhao Y, Zhao B, Liu Z, Lai S, Yi X, Guo L, Esteban MA, Zeng Y, Yang H, Lai L (2015) Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci 72:1175–1184

    PubMed  CAS  Google Scholar 

  • Zhou H et al (2018a) In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat Neurosci 21:440–446

    PubMed  CAS  Google Scholar 

  • Zhou M, Hu Z, Qiu L, Zhou T, Feng M, Hu Q, Zeng B, Li Z, Sun Q, Wu Y, Liu X, Wu L, Liang D (2018b) Seamless Genetic Conversion of SMN2 to SMN1 via CRISPR/Cpf1 and Single-Stranded Oligodeoxynucleotides in Spinal Muscular Atrophy Patient-Specific Induced Pluripotent Stem Cells. Hum Gene Ther 29:1252–1263

    PubMed  CAS  Google Scholar 

  • Zhou W, Ma D, Sun AX, Tran HD, Ma DL, Singh BK, Zhou J, Zhang J, Wang D, Zhao Y, Yen PM, Goh E, Tan EK (2018c) PD-linked CHCHD2 mutations impair CHCHD10 and MICOS complex leading to mitochondria dysfunction. Hum Mol Genet. https://doi.org/10.1093/hmg/ddy413

    PubMed Central  Google Scholar 

  • Zhu XX, Zhong YZ, Ge YW, Lu KH, Lu SS (2018) CRISPR/Cas9-Mediated Generation of Guangxi Bama Minipigs Harboring Three Mutations in alpha-Synuclein Causing Parkinson's Disease. Sci Rep 8:12420. https://doi.org/10.1038/s41598-018-30436-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was supported by the Veterans Affairs Merit Award I01BX002477, Veterans Affairs Research Career Scientist Award and the National Institutes of Health Grant AG048205 to AZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asgar Zaheer.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raikwar, S.P., Kikkeri, N.S., Sakuru, R. et al. Next Generation Precision Medicine: CRISPR-mediated Genome Editing for the Treatment of Neurodegenerative Disorders. J Neuroimmune Pharmacol 14, 608–641 (2019). https://doi.org/10.1007/s11481-019-09849-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-019-09849-y

Keywords

Navigation