Skip to main content

Advertisement

Log in

Destination Brain: the Past, Present, and Future of Therapeutic Gene Delivery

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Neurological diseases and disorders (NDDs) present a significant societal burden and currently available drug- and biological-based therapeutic strategies have proven inadequate to alleviate it. Gene therapy is a suitable alternative to treat NDDs compared to conventional systems since it can be tailored to specifically alter select gene expression, reverse disease phenotype and restore normal function. The scope of gene therapy has broadened over the years with the advent of RNA interference and genome editing technologies. Consequently, encouraging results from central nervous system (CNS)-targeted gene delivery studies have led to their transition from preclinical to clinical trials. As we shift to an exciting gene therapy era, a retrospective of available literature on CNS-associated gene delivery is in order. This review is timely in this regard, since it analyzes key challenges and major findings from the last two decades and evaluates future prospects of brain gene delivery. We emphasize major areas consisting of physiological and pharmacological challenges in gene therapy, function-based selection of a ideal cellular target(s), available therapy modalities, and diversity of viral vectors and nanoparticles as vehicle systems. Further, we present plausible answers to key questions such as strategies to circumvent low blood-brain barrier permeability and most suitable CNS cell types for targeting. We compare and contrast pros and cons of the tested viral vectors in the context of delivery systems used in past and current clinical trials. Gene vector design challenges are also evaluated in the context of cell-specific promoters. Key challenges and findings reported for recent gene therapy clinical trials, assessing viral vectors and nanoparticles are discussed from the perspective of bench to bedside gene therapy translation. We conclude this review by tying together gene delivery challenges, available vehicle systems and comprehensive analyses of neuropathogenesis to outline future prospects of CNS-targeted gene therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

6-OHDA:

6-hydroxydopamine

Aβ:

Amyloid-β

AADC:

Amino acid decarboxylase

AAV:

Adeno-associated virus

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

ApoE:

Apolipoprotein E

AQP:

Aquaporin

AV:

Adenoviral vector

BBB:

Blood-brain barrier

Bcl-w:

B-cell lymphoma-w

BDNF:

Brain-derived neurotrophic factor

BMVEC:

Brain microvascular endothelial cell

Cas9:

CRISPR-associated system 9

CMV:

Cytomegalovirus

CNS:

Central nervous system

CNTF:

Ciliary neurotrophic factor

CPF:

Chondroitin polymerizing factor

CRISPR:

Clustered regulatory interspaced short palindromic repeats

CS-1:

Chondroitin synthase-1

EAAT:

Excitatory amino acid transporter

EPO:

Erythropoietin

GALC:

Galactocerebrosidase

GDNF:

Glial cell-derived neurotrophic factor

GFAP:

Glial fibrillary acidic protein

gfa2:

GFAP essential promoter segment

GFP:

Green fluorescent protein

GLAST:

Glutamate transporter

GS:

Glutamine synthase

h:

Human

HAND:

HIV-associated neurocognitive disorders

HD:

Huntington’s disease

HIV:

Human immunodeficiency virus

htt:

Huntingtin

ICV:

Intracerebroventricular

IGF:

Insulin-like growth factor

IL:

Interleukin

kb:

Kilobase

LCMV:

Lymphocytic choriomeningitis virus

LV:

Lentiviral vector

MBP:

Myelin basic protein

MS:

Multiple sclerosis

MCAO:

Middle cerebral artery occlusion

MHC:

Major histocompatibility complex

miRNA/miR/mi:

microRNA

muLV:

Murine leukemia virus

NAb:

Neutralizing antibody

NDDs:

Neurological diseases and disorders

Nef:

Negative regulatory factor

NGF:

Nerve growth factor

NHP:

Non-human primate

NMDA:

N-methyl-D-aspartate

NP:

Nanoparticle

NSE:

Neuron-specific enolase

NTRN:

Neurturin

PAMAM:

Polyamidoamine

PD:

Parkinson’s disease

pDNA:

Plasmid DNA

PDGF:

Platelet-derived growth factor

PEG:

Polyethylene glycol

PEI:

Polyethylenimine

PLGA:

Poly(lactic-co-glycolic) acid

RNAi:

RNA interference

scAAV:

Self-complementary AAV

ssAAV:

Single-stranded AAV

SCI:

Spinal cord injury

SD:

Sprague-Dawley

shRNA/sh:

Short hairpin RNA

siRNA/si:

Small interfering RNA

SN:

Substantia nigra

SVZ:

Subventricular zone

Syn:

Synapsin

TH:

Tyrosine hydroxylase

TNF:

Tumor necrosis factor

VEGF:

Vascular endothelial growth factor

VSV-G:

Vesicular stomatitis virus-G

References

  • Aartsen WM, Van Cleef KW, Pellissier LP, Hoek RM, Vos RM, Blits B, Ehlert EM, Balaggan KS, Ali RR, Verhaagen J (2010) GFAP-driven GFP expression in activated mouse Müller glial cells aligning retinal blood vessels following intravitreal injection of AAV2/6 vectors. PloS One 5:e12387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nature Reviews. Neuroscience 7:41–53

    Article  CAS  PubMed  Google Scholar 

  • Abordo-Adesida E, Follenzi A, Barcia C, Sciascia S, Castro MG, Naldini L, Lowenstein PR (2005) Stability of lentiviral vector-mediated transgene expression in the brain in the presence of systemic antivector immune responses. Human Gene Therapy 16:741–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adam SA, Schnell O, Pöschl J, Eigenbrod S, Kretzschmar HA, Tonn JC, Schüller U (2012) ALDH1A1 is a marker of astrocytic differentiation during brain development and correlates with better survival in glioblastoma patients. Brain Pathology 22:788–797

    Article  CAS  PubMed  Google Scholar 

  • Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 339:156–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akita H, Nakatani T, Kuroki K, Maenaka K, Tange K, Nakai Y, Harashima H (2015) Effect of hydrophobic scaffold on the cellular uptake and gene transfection activities of DNA-encapsulating liposomal nanoparticles via intracerebroventricular administration. International Journal of Pharmaceutics 490:142–145

    Article  CAS  PubMed  Google Scholar 

  • Alberdi E, Wyssenbach A, Alberdi M, Sanchez-Gomez MV, Cavaliere F, Rodriguez JJ, Verkhratsky A, Matute C (2013) Ca(2+) -dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid beta-treated astrocytes and in a model of Alzheimer’s disease. Aging Cell 12:292–302

    Article  CAS  PubMed  Google Scholar 

  • Allen NJ, Barres BA (2009) Neuroscience: glia—more than just brain glue. Nature 457:675–677

    Article  CAS  PubMed  Google Scholar 

  • Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacology & Therapeutics 138:155–175

    Article  CAS  Google Scholar 

  • Ambrosi G, Cerri S, Blandini F (2014) A further update on the role of excitotoxicity in the pathogenesis of Parkinson’s disease. Journal of Neural Transmission 121:849–859

    Article  CAS  PubMed  Google Scholar 

  • Ambrosini E, Ceccherini-Silberstein F, Erfle V, Aloisi F, Levi G (1999) Gene transfer in astrocytes: comparison between different delivering methods and expression of the HIV-1 protein Nef. Journal of Neuroscience Research 55:569–577

    Article  CAS  PubMed  Google Scholar 

  • An H, Cho D-W, Lee SE, Yang Y-S, Han S-C, Lee CJ (2016) Differential cellular tropism of lentivirus and adeno-associated virus in the brain of Cynomolgus monkey. Experimental Neurology 25:48–54

    Google Scholar 

  • Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ, Sofroniew MV (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532:195–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade-Moraes CH, Oliveira-Pinto AV, Castro-Fonseca E, da Silva CG, Guimarães DM, Szczupak D, Parente-Bruno DR, Carvalho LR, Polichiso L, Gomes BV (2013) Cell number changes in Alzheimer’s disease relate to dementia, not to plaques and tangles. Brain 136:3738–3752

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrews JL, Kadan MJ, Gorziglia MI, Kaleko M, Connelly S (2001) Generation and characterization of E1/E2a/E3/E4-deficient adenoviral vectors encoding human factor VIII. Molecular Therapy 3:329

    Article  CAS  PubMed  Google Scholar 

  • Anglade P, Vyas S, Javoy-Agid F, Herrero M, Michel P, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch E, Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histology and Histopathology 12:25–32

    CAS  PubMed  Google Scholar 

  • Aronin N, DiFiglia M (2014) Huntingtin-lowering strategies in Huntington’s disease: antisense oligonucleotides, small RNAs, and gene editing. Movement Disorders 29:1455–1461

    Article  CAS  PubMed  Google Scholar 

  • Arregui L, Benítez JA, Razgado LF, Vergara P, Segovia J (2011) Adenoviral astrocyte-specific expression of BDNF in the striata of mice transgenic for Huntington’s disease delays the onset of the motor phenotype. Cellular and Molecular Neurobiology 31:1229–1243

    Article  CAS  PubMed  Google Scholar 

  • Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34:325–337

    Article  CAS  PubMed  Google Scholar 

  • Aschauer DF, Kreuz S, Rumpel S (2013) Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PloS One 8:e76310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashutosh CC, Borgmann K, Brew K, Ghorpade A (2012) Tissue inhibitor of metalloproteinases-1 protects human neurons from staurosporine and HIV-1-induced apoptosis: mechanisms and relevance to HIV-1-associated dementia. Cell Death & Disease 3:e332

    Article  CAS  Google Scholar 

  • AveXis I (2016) AveXis reports data from ongoing phase 1 trial of AVXS-101 in spinal muscular atrophy type 1. In: AxeVis Inc.

  • Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430–440

    Article  CAS  PubMed  Google Scholar 

  • Bartlett JS, Samulski RJ, McCown TJ (1998) Selective and rapid uptake of adeno-associated virus type 2 in brain. Human Gene Therapy 9:1181–1186

    Article  CAS  PubMed  Google Scholar 

  • Bartus RT, Weinberg MS, Samulski RJ (2014) Parkinson’s disease gene therapy: success by design meets failure by efficacy. Molecular Therapy 22:487–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beers DR, Zhao W, Liao B, Kano O, Wang J, Huang A, Appel SH, Henkel JS (2011) Neuroinflammation modulates distinct regional and temporal clinical responses in ALS mice. Brain, Behavior, and Immunity 25:1025–1035

    Article  CAS  PubMed  Google Scholar 

  • Begum AN, Jones MR, Lim GP, Morihara T, Kim P, Heath DD, Rock CL, Pruitt MA, Yang F, Hudspeth B (2008) Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. The Journal of Pharmacology and Experimental Therapeutics 326:196–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellini MJ, Hereñú CB, Goya RG, Garcia-Segura LM (2011) Insulin-like growth factor-I gene delivery to astrocytes reduces their inflammatory response to lipopolysaccharide. Journal of Neuroinflammation 8:1

    Article  CAS  Google Scholar 

  • Bemelmans A-P, Horellou P, Pradier L, Brunet I, Colin P, Mallet J (1999) Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington’s disease, as demonstrated by adenoviral gene transfer. Human Gene Therapy 10:2987–2997

    Article  CAS  PubMed  Google Scholar 

  • Benkhelifa-Ziyyat S, Besse A, Roda M, Duque S, Astord S, Carcenac R, Marais T, Barkats M (2013) Intramuscular scAAV9-SMN injection mediates widespread gene delivery to the spinal cord and decreases disease severity in SMA mice. Molecular Therapy 21:282–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benvenisti-Zarom L, Regan RF (2007) Astrocyte-specific heme oxygenase-1 hyperexpression attenuates heme-mediated oxidative injury. Neurobiology of Disease 26:688–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bevan AK, Duque S, Foust KD, Morales PR, Braun L, Schmelzer L, Chan CM, McCrate M, Chicoine LG, Coley BD (2011) Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Molecular Therapy 19:1971–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Block ML, Zecca L, Hong J-S (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature Reviews. Neuroscience 8:57–69

    Article  CAS  PubMed  Google Scholar 

  • Blömer U, Naldini L, Verma IM, Trono D, Gage FH (1996) Applications of gene therapy to the CNS. Human Molecular Genetics 5:1397–1404

    Article  PubMed  Google Scholar 

  • Blömer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH (1997) Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. Journal of Virology 71:6641–6649

    PubMed  PubMed Central  Google Scholar 

  • Boillée S, Velde CV, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59

    Article  PubMed  CAS  Google Scholar 

  • Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF, Masurier C (2010) Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Human Gene Therapy 21:704–712

    Article  CAS  PubMed  Google Scholar 

  • Bradl M, Lassmann H (2010) Oligodendrocytes: biology and pathology. Acta Neuropathologica 119:37–53

    Article  PubMed  Google Scholar 

  • Brenner M, Kisseberth WC, Su Y, Besnard F, Messing A (1994) GFAP promoter directs astrocyte-specific expression in transgenic mice. The Journal of Neuroscience 14:1030–1037

    CAS  PubMed  Google Scholar 

  • Buffo A, Rolando C, Ceruti S (2010) Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential. Biochemical Pharmacology 79:77–89

    Article  CAS  PubMed  Google Scholar 

  • Byrnes AP, MacLaren RE, Charlton HM (1996) Immunological instability of persistent adenovirus vectors in the brain: peripheral exposure to vector leads to renewed inflammation, reduced gene expression, and demyelination. The Journal of Neuroscience 16:3045–3055

    CAS  PubMed  Google Scholar 

  • Cabezas R, Avila-Rodriguez M, Vega-Vela NE, Echeverria V, González J, Hidalgo OA, Santos AB, Aliev G, Barreto GE (2016) Growth factors and astrocytes metabolism: possible roles for platelet derived growth factor. Medicinal Chemistry 12:204–210

    Article  CAS  PubMed  Google Scholar 

  • Callaway EM (2005) A molecular and genetic arsenal for systems neuroscience. Trends in Neurosciences 28:196–201

    Article  CAS  PubMed  Google Scholar 

  • Cannon JR, Sew T, Montero L, Burton EA, Greenamyre JT (2011) Pseudotype-dependent lentiviral transduction of astrocytes or neurons in the rat substantia nigra. Experimental Neurology 228:41–52

    Article  CAS  PubMed  Google Scholar 

  • Carson MJ, Thrash JC, Walter B (2006) The cellular response in neuroinflammation: the role of leukocytes, microglia and astrocytes in neuronal death and survival. Clinical Neuroscience Research 6:237–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cearley CN, Vandenberghe LH, Parente MK, Carnish ER, Wilson JM, Wolfe JH (2008) Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain. Molecular Therapy 16:1710–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerullo V, Pesonen S, Diaconu I, Escutenaire S, Arstila PT, Ugolini M, Nokisalmi P, Raki M, Laasonen L, Särkioja M (2010) Oncolytic adenovirus coding for granulocyte macrophage colony-stimulating factor induces antitumoral immunity in cancer patients. Cancer Research 70:4297–4309

    Article  CAS  PubMed  Google Scholar 

  • Ceulemans A-G, Zgavc T, Kooijman R, Hachimi-Idrissi S, Sarre S, Michotte Y (2010) The dual role of the neuroinflammatory response after ischemic stroke: modulatory effects of hypothermia. Journal of Neuroinflammation 7:1

    Article  Google Scholar 

  • Chaturvedi M, Molino Y, Sreedhar B, Khrestchatisky M, Kaczmarek L (2014) Tissue inhibitor of matrix metalloproteinases-1 loaded poly (lactic-co-glycolic acid) nanoparticles for delivery across the blood–brain barrier. International Journal of Nanomedicine 9:575

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen H, McCarty D, Bruce A, Suzuki K (1998) Gene transfer and expression in oligodendrocytes under the control of myelin basic protein transcriptional control region mediated by adeno-associated virus. Gene Therapy 5:50–58

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Lin W, Lin J, Wu C, Zhang L, Huang Z, Lai J (2012) The protective effects of the lentivirus-mediated neuroglobin gene transfer on spinal cord injury in rabbits. Spinal Cord 50:467–471

    Article  PubMed  Google Scholar 

  • Choi-Lundberg DL, Lin Q, Chang Y-N, Chiang YL, Hay CM, Mohajeri H, Davidson BL, Bohn MC (1997) Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 275:838–841

    Article  CAS  PubMed  Google Scholar 

  • Ciesielska A, Hadaczek P, Mittermeyer G, Zhou S, Wright JF, Bankiewicz KS, Forsayeth J (2013) Cerebral infusion of AAV9 vector-encoding non-self proteins can elicit cell-mediated immune responses. Molecular Therapy 21:158–166

    Article  CAS  PubMed  Google Scholar 

  • Cisneros IE, Ghorpade A (2012) HIV-1, methamphetamine and astrocyte glutamate regulation: combined excitotoxic implications for neuro-AIDS. Current HIV Research 10:392–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cisneros IE, Ghorpade A (2014) Methamphetamine and HIV-1-induced neurotoxicity: role of trace amine associated receptor 1 cAMP signaling in astrocytes. Neuropharmacology 85:499–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colangelo AM, Alberghina L, Papa M (2014) Astrogliosis as a therapeutic target for neurodegenerative diseases. Neuroscience Letters 565:59–64

    Article  CAS  PubMed  Google Scholar 

  • Colin A, Faideau M, Dufour N, Auregan G, Hassig R, Andrieu T, Brouillet E, Hantraye P, Bonvento G, Déglon N (2009) Engineered lentiviral vector targeting astrocytes in vivo. Glia 57:667–679

    Article  PubMed  Google Scholar 

  • Cucchiarini M, Ren X, Perides G, Terwilliger E (2003) Selective gene expression in brain microglia mediated via adeno-associated virus type 2 and type 5 vectors. Gene Therapy 10:657–667

    Article  CAS  PubMed  Google Scholar 

  • De Stefano N, Guidi L, Stromillo M, Bartolozzi M, Federico A (2003) Imaging neuronal and axonal degeneration in multiple sclerosis. Neurological Sciences 24:s283–s286

    Article  PubMed  Google Scholar 

  • Debinski W, Tatter SB (2009) Convection-enhanced delivery for the treatment of brain tumors. Expert Review of Neurotherapeutics 9:1519–1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desclaux M, Teigell M, Amar L, Vogel R, y Ribotta MG, Privat A, Mallet J (2009) A novel and efficient gene transfer strategy reduces glial reactivity and improves neuronal survival and axonal growth in vitro. PloS One 4:e6227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhar A, Gardner J, Borgmann K, Wu L, Ghorpade A (2006) Novel role of TGF-beta in differential astrocyte-TIMP-1 regulation: implications for HIV-1-dementia and neuroinflammation. Journal of Neuroscience Research 83:1271–1280

    Article  CAS  PubMed  Google Scholar 

  • DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel J, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993

    Article  CAS  PubMed  Google Scholar 

  • Dittgen T, Nimmerjahn A, Komai S, Licznerski P, Waters J, Margrie TW, Helmchen F, Denk W, Brecht M, Osten P (2004) Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proceedings of the National Academy of Sciences 101:18206–18211

    Article  CAS  Google Scholar 

  • Do Thi N, Saillour P, Ferrero L, Dedieu J, Mallet J, Paunio T (2004) Delivery of GDNF by an E1, E3/E4 deleted adenoviral vector and driven by a GFAP promoter prevents dopaminergic neuron degeneration in a rat model of Parkinson’s disease. Gene Therapy 11:746–756

    Article  CAS  PubMed  Google Scholar 

  • Dong J-Y, Fan P-D, Frizzell RA (1996) Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Human Gene Therapy 7:2101–2112

    Article  CAS  PubMed  Google Scholar 

  • Donsante A, McEachin Z, Riley J, Leung C, Kanz L, O’Connor D, Boulis N (2016) Intracerebroventricular delivery of self-complementary adeno-associated virus serotype 9 to the adult rat brain. Gene Therapy 23:401–407

    Article  CAS  PubMed  Google Scholar 

  • Dormond E, Perrier M, Kamen A (2009) From the first to the third generation adenoviral vector: what parameters are governing the production yield? Biotechnology Advances 27:133–144

    Article  CAS  PubMed  Google Scholar 

  • Drinkut A, Tereshchenko Y, Schulz JB, Bähr M, Kügler S (2012) Efficient gene therapy for Parkinson’s disease using astrocytes as hosts for localized neurotrophic factor delivery. Molecular Therapy 20:534–543

    Article  CAS  PubMed  Google Scholar 

  • Eberling J, Jagust W, Christine C, Starr P, Larson P, Bankiewicz K, Aminoff M (2008) Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70:1980–1983

    Article  CAS  PubMed  Google Scholar 

  • Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomedicine & Pharmacotherapy 58:39–46

    Article  CAS  Google Scholar 

  • Escartin C, Brouillet E, Gubellini P, Trioulier Y, Jacquard C, Smadja C, Knott GW, Kerkerian-Le Goff L, Déglon N, Hantraye P (2006) Ciliary neurotrophic factor activates astrocytes, redistributes their glutamate transporters GLAST and GLT-1 to raft microdomains, and improves glutamate handling in vivo. The Journal of Neuroscience 26:5978–5989

    Article  CAS  PubMed  Google Scholar 

  • Evans MC, Couch Y, Sibson N, Turner MR (2013) Inflammation and neurovascular changes in amyotrophic lateral sclerosis. Molecular and Cellular Neurosciences 53:34–41

    Article  CAS  PubMed  Google Scholar 

  • Ezcurra ALDL, Chertoff M, Ferrari C, Graciarena M, Pitossi F (2010) Chronic expression of low levels of tumor necrosis factor-α in the substantia nigra elicits progressive neurodegeneration, delayed motor symptoms and microglia/macrophage activation. Neurobiology of Disease 37:630–640

    Article  CAS  Google Scholar 

  • Fan MM, Raymond LA (2007) N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease. Progress in Neurobiology 81:272–293

    Article  CAS  PubMed  Google Scholar 

  • Ferrari CC, Depino AM, Prada F, Muraro N, Campbell S, Podhajcer O, Perry VH, Anthony DC, Pitossi FJ (2004) Reversible demyelination, blood-brain barrier breakdown, and pronounced neutrophil recruitment induced by chronic IL-1 expression in the brain. The American Journal of Pathology 165:1827–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nature Biotechnology 27:59–65

    Article  CAS  PubMed  Google Scholar 

  • Franklin RJ, Kotter MR (2008) The biology of CNS remyelination. Journal of Neurology 255:19–25

    Article  CAS  PubMed  Google Scholar 

  • Fuller S, Münch G, Steele M (2009) Activated astrocytes: a therapeutic target in Alzheimer’s disease? Expert Review of Neurotherapeutics 9:1585–1594

    Article  CAS  PubMed  Google Scholar 

  • Furman JL, Sama DM, Gant JC, Beckett TL, Murphy MP, Bachstetter AD, Van Eldik LJ, Norris CM (2012) Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer’s disease. The Journal of Neuroscience 32:16129–16140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galou M, Pournin S, Ensergueix D, Ridet JL, Tchélingérian JL, Lossouran L, Privat A, Babinet C, Dupouey P (1994) Normal and pathological expression of GFAP promoter elements in transgenic mice. Glia 12:281–293

    Article  CAS  PubMed  Google Scholar 

  • Garden GA, Möller T (2006) Microglia biology in health and disease. Journal of Neuroimmune Pharmacology 1:127–137

    Article  PubMed  Google Scholar 

  • Gardner J, Ghorpade A (2003) Tissue inhibitor of metalloproteinase (TIMP)-1: the TIMPed balance of matrix metalloproteinases in the central nervous system. Journal of Neuroscience Research 74:801–806

    Article  CAS  PubMed  Google Scholar 

  • Geldenhuys W, Mbimba T, Bui T, Harrison K, Sutariya V (2011) Brain-targeted delivery of paclitaxel using glutathione-coated nanoparticles for brain cancers. Journal of Drug Targeting 19:837–845

    Article  CAS  PubMed  Google Scholar 

  • Geppert M, Hohnholt MC, Thiel K, Nürnberger S, Grunwald I, Rezwan K, Dringen R (2011) Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes. Nanotechnology 22:145101

    Article  PubMed  CAS  Google Scholar 

  • Gerdes CA, Castro MG, Löwenstein PR (2000) Strong promoters are the key to highly efficient, noninflammatory and noncytotoxic adenoviral-mediated transgene delivery into the brain in vivo. Molecular Therapy 2:330

    Article  CAS  PubMed  Google Scholar 

  • Ghafouri M, Amini S, Khalili K, Sawaya BE (2006) HIV-1 associated dementia: symptoms and causes. Retrovirology 3:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gholizadeh S, Tharmalingam S, MacAldaz ME, Hampson DR (2013) Transduction of the central nervous system after intracerebroventricular injection of adeno-associated viral vectors in neonatal and juvenile mice. Human Gene Therapy Methods 24:205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J (2013) Gene therapy clinical trials worldwide to 2012–an update. The Journal of Gene Medicine 15:65–77

    Article  CAS  PubMed  Google Scholar 

  • Giralt A, Friedman HC, Caneda-Ferron B, Urban N, Moreno E, Rubio N, Blanco J, Peterson A, Canals JM, Alberch J (2010) BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington’s disease. Gene Therapy 17:1294–1308

    Article  CAS  PubMed  Google Scholar 

  • Gorantla S, Poluektova L, Gendelman HE (2012) Rodent models for HIV-associated neurocognitive disorders. Trends in Neurosciences 35:197–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goula D, Remy J, Erbacher P, Wasowicz M, Levi G, Abdallah B, Demeneix B (1998) Size, diffusibility and transfection performance of linear PEI/DNA complexes in the mouse central nervous system. Gene Therapy 5:712–717

    Article  CAS  PubMed  Google Scholar 

  • Gray SJ, Matagne V, Bachaboina L, Yadav S, Ojeda SR, Samulski RJ (2011) Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Molecular Therapy 19:1058–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosskreutz J, Van Den Bosch L, Keller BU (2010) Calcium dysregulation in amyotrophic lateral sclerosis. Cell Calcium 47:165–174

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Cázares H, Tzeng SY, Young NP, Abutaleb AO, Quiñones-Hinojosa A, Green JJ (2014) Biodegradable polymeric nanoparticles show high efficacy and specificity at DNA delivery to human glioblastoma in vitro and in vivo. ACS Nano 8:5141–5153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gwak S-J, Yun Y, Kim KN, Ha Y (2016) Therapeutic use of 3β-[N-(N′, N′-Dimethylaminoethane) Carbamoyl] cholesterol-modified PLGA Nanospheres as Gene delivery vehicles for spinal cord injury. PloS One 11:e0147389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends in Molecular Medicine 13:54–63

    Article  CAS  PubMed  Google Scholar 

  • Health USNIo (2016) Neurodegeneration clinical trials. In: NIH

  • Hendriks W, Eggers R, Verhaagen J, Boer G (2007) Gene transfer to the spinal cord neural scar with lentiviral vectors: predominant transgene expression in astrocytes but not in meningeal cells. Journal of Neuroscience Research 85:3041–3052

    Article  CAS  PubMed  Google Scholar 

  • Hermann DM, Kilic E, Kügler S, Isenmann S, Bähr M (2001a) Adenovirus-mediated glial cell line-derived neurotrophic factor (GDNF) expression protects against subsequent cortical cold injury in rats. Neurobiology of Disease 8:964–973

    Article  CAS  PubMed  Google Scholar 

  • Hermann DM, Kilic E, Kügler S, Isenmann S, Bähr M (2001b) Adenovirus-mediated GDNF and CNTF pretreatment protects against striatal injury following transient middle cerebral artery occlusion in mice. Neurobiology of Disease 8:655–666

    Article  CAS  PubMed  Google Scholar 

  • Hermens WT, Verhaagen J (1998) Viral vectors, tools for gene transfer in the nervous system. Progress in Neurobiology 55:399–432

    Article  CAS  PubMed  Google Scholar 

  • Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? The Lancet Neurology 8:382–397

    Article  CAS  PubMed  Google Scholar 

  • Homs J, Ariza L, Pages G, Udina E, Navarro X, Chillón M, Bosch A (2011) Schwann cell targeting via intrasciatic injection of AAV8 as gene therapy strategy for peripheral nerve regeneration. Gene Therapy 18:622–630

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, Li F, Luo B, Alvarez-Carbonell D, Garcia-Mesa Y, Karn J (2014) RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proceedings of the National Academy of Sciences 111:11461–11466

    Article  CAS  Google Scholar 

  • Hu X, Zhang D, Pang H, Caudle WM, Li Y, Gao H, Liu Y, Qian L, Wilson B, Di Monte DA (2008) Macrophage antigen complex-1 mediates reactive microgliosis and progressive dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Journal of Immunology 181:7194–7204

    Article  CAS  Google Scholar 

  • Hwang D-Y, Carlezon WA Jr, Isacson O, Kim K-S (2001) A high-efficiency synthetic promoter that drives transgene expression selectively in noradrenergic neurons. Human Gene Therapy 12:1731–1740

    Article  CAS  PubMed  Google Scholar 

  • Institut USN, Health eo (2016) Ibudilast clinical trials. In: p Search results on for Ibudilast clinical trials

  • Jaffer H, Morris VB, Stewart D, Labhasetwar V (2011) Advances in stroke therapy. Drug Delivery and Translational Research 1:409–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobsson J, Ericson C, Jansson M, Björk E, Lundberg C (2003) Targeted transgene expression in rat brain using lentiviral vectors. Journal of Neuroscience Research 73:876–885

    Article  CAS  PubMed  Google Scholar 

  • Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM, Merkel TJ, Luthi AJ, Patel PC, Cutler JI (2013) Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Science Translational Medicine 5:209ra152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiménez JL, Clemente MI, Weber ND, Sanchez J, Ortega P, de la Mata FJ, Gómez R, García D, López-Fernández LA, Muñoz-Fernández MÁ (2010) Carbosilane dendrimers to transfect human astrocytes with small interfering RNA targeting human immunodeficiency virus. BioDrugs 24:331–343

    Article  PubMed  Google Scholar 

  • Joris F, Manshian BB, Peynshaert K, De Smedt SC, Braeckmans K, Soenen SJ (2013) Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro–in vivo gap. Chemical Society Reviews 42:8339–8359

    Article  CAS  PubMed  Google Scholar 

  • Jucker M (2010) The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nature Medicine 16:1210–1214

    Article  CAS  PubMed  Google Scholar 

  • Kaminski R, Chen Y, Fischer T, Tedaldi E, Napoli A, Zhang Y, Karn J, Hu W, Khalili K (2016) Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Scientific Reports 6:28213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA, Bland RJ, Young D, Strybing K, Eidelberg D (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369:2097–2105

    Article  CAS  PubMed  Google Scholar 

  • Katz MG, Fargnoli AS, Williams RD, Bridges CR (2013) Gene therapy delivery systems for enhancing viral and nonviral vectors for cardiac diseases: current concepts and future applications. Human Gene Therapy 24:914–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim BO, Liu Y, Ruan Y, ZC X, Schantz L, He JJ (2003) Neuropathologies in transgenic mice expressing human immunodeficiency virus type 1 tat protein under the regulation of the astrocyte-specific glial fibrillary acidic protein promoter and doxycycline. The American Journal of Pathology 162:1693–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim I-D, Lim C-M, Kim J-B, Nam HY, Nam K, Kim S-W, Park J-S, Lee J-K (2010) Neuroprotection by biodegradable PAMAM ester (e-PAM-R)-mediated HMGB1 siRNA delivery in primary cortical cultures and in the postischemic brain. Journal of Controlled Release 142:422–430

    Article  CAS  PubMed  Google Scholar 

  • Kim I-D, Shin J-H, Kim S-W, Choi S, Ahn J, Han P-L, Park J-S, Lee J-K (2012) Intranasal delivery of HMGB1 siRNA confers target gene knockdown and robust neuroprotection in the postischemic brain. Molecular Therapy 20:829–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J-B, Choi JS, Nam K, Lee M, Park J-S, Lee J-K (2006) Enhanced transfection of primary cortical cultures using arginine-grafted PAMAM dendrimer, PAMAM-Arg. Journal of Controlled Release 114:110–117

    Article  CAS  PubMed  Google Scholar 

  • Kiyota T, Yamamoto M, Schroder B, Jacobsen MT, Swan RJ, Lambert MP, Klein WL, Gendelman HE, Ransohoff RM, Ikezu T (2009) AAV1/2-mediated CNS gene delivery of dominant-negative CCL2 mutant suppresses gliosis, β-amyloidosis, and learning impairment of APP/PS1 mice. Molecular Therapy 17:803–809

    Article  CAS  PubMed Central  Google Scholar 

  • Klejbor I, Stachowiak E, Bharali D, Roy I, Spodnik I, Morys J, Bergey E, Prasad P, Stachowiak M (2007) ORMOSIL nanoparticles as a non-viral gene delivery vector for modeling polyglutamine induced brain pathology. Journal of Neuroscience Methods 165:230–243

    Article  CAS  PubMed  Google Scholar 

  • Koerber JT, Klimczak R, Jang J-H, Dalkara D, Flannery JG, Schaffer DV (2009) Molecular evolution of adeno-associated virus for enhanced glial gene delivery. Molecular Therapy 17:2088–2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kordower J, Bjorklund A (2013) Trophic factor gene therapy for Parkinson's disease. Movement Disorders 28(1): 96-109

  • Kreuter J (2014) Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Advanced Drug Delivery Reviews 71:2–14

    Article  CAS  PubMed  Google Scholar 

  • Kügler S, Lingor P, Schöll U, Zolotukhin S, Bähr M (2003) Differential transgene expression in brain cells in vivo and in vitro from AAV-2 vectors with small transcriptional control units. Virology 311:89–95

    Article  PubMed  CAS  Google Scholar 

  • Kuhn B, Hoogland TM, Wang SS-H (2011) Injection of recombinant adenovirus for delivery of genetically encoded calcium indicators into astrocytes of the cerebellar cortex. Cold Spring Harbor Protocols 2011:1217–1223

    PubMed  Google Scholar 

  • Kwon EJ, Lasiene J, Jacobson BE, Park I-K, Horner PJ, Pun SH (2010) Targeted nonviral delivery vehicles to neural progenitor cells in the mouse subventricular zone. Biomaterials 31:2417–2424

    Article  CAS  PubMed  Google Scholar 

  • Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Progress in Neurobiology 115:157–188

    Article  CAS  PubMed  Google Scholar 

  • Lai Z, Brady RO (2002) Gene transfer into the central nervous system in vivo using a recombinanat lentivirus vector. Journal of Neuroscience Research 67:363–371

    Article  CAS  PubMed  Google Scholar 

  • Lawlor PA, Bland RJ, Mouravlev A, Young D, During MJ (2009) Efficient gene delivery and selective transduction of glial cells in the mammalian brain by AAV serotypes isolated from nonhuman primates. Molecular Therapy 17:1692–1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Messing A, Su M, Brenner M (2008) GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia 56:481–493

    Article  PubMed  Google Scholar 

  • LeWitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW, Eskandar EN, Kostyk SK, Thomas K, Sarkar A, Siddiqui MS (2011) AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. The Lancet Neurology 10:309–319

    Article  CAS  PubMed  Google Scholar 

  • Lisovoski F, Akli S, Peltekian E, Vigne E, Haase G, Perricaudet M, Dreyfus PA, Kahn A, Peschanski M (1997) Phenotypic alteration of astrocytes induced by ciliary neurotrophic factor in the intact adult brain, as revealed by adenovirus-mediated gene transfer. The Journal of Neuroscience 17:7228–7236

    CAS  PubMed  Google Scholar 

  • Liu G, Martins I, Chiorini J, Davidson B (2005) Adeno-associated virus type 4 (AAV4) targets ependyma and astrocytes in the subventricular zone and RMS. Gene Therapy 12:1503–1508

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Himes BT, Moul J, Huang W, Chow SY, Tessler A, Fischer I (1997) Application of recombinant adenovirus for in vivo gene delivery to spinal cord. Brain Research 768:19–29

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Liu Z, Wang Y, Liang Y-R, Wen X, Hu J, Yang X, Liu J, Xiao S, Cheng D (2013) Investigation of the performance of PEG–PEI/ROCK-II-siRNA complexes for Alzheimer’s disease in vitro. Brain Research 1490:43–51

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Miao Q, Yuan J, Han S, Zhang P, Li S, Rao Z, Zhao W, Ye Q, Geng J (2015) Ascl1 converts dorsal midbrain astrocytes into functional neurons in vivo. The Journal of Neuroscience 35:9336–9355

    Article  CAS  PubMed  Google Scholar 

  • Lobello K, Ryan JM, Liu E, Rippon G, Black R (2012) Targeting Beta amyloid: a clinical review of immunotherapeutic approaches in Alzheimer’s disease. International Journal of Alzheimer's Disease 2012:628070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu S, Morris VB, Labhasetwar V (2015) Codelivery of DNA and siRNA via arginine-rich PEI-based polyplexes. Molecular Pharmaceutics 12:621–629

    Article  CAS  PubMed  Google Scholar 

  • Lu S-M, Tremblay M-È, King IL, Qi J, Reynolds HM, Marker DF, Varrone JJ, Majewska AK, Dewhurst S, Gelbard HA (2011) HIV-1 tat-induced microgliosis and synaptic damage via interactions between peripheral and central myeloid cells. PloS One 6:e23915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu-Nguyen NB, Broadstock M, Schliesser MG, Bartholomae CC, von Kalle C, Schmidt M, Yáñez-Muñoz RJ (2014) Transgenic expression of human glial cell line-derived neurotrophic factor from integration-deficient lentiviral vectors is neuroprotective in a rodent model of Parkinson’s disease. Human Gene Therapy 25:631–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luther EM, Koehler Y, Diendorf J, Epple M, Dringen R (2011) Accumulation of silver nanoparticles by cultured primary brain astrocytes. Nanotechnology 22:375101

    Article  PubMed  CAS  Google Scholar 

  • Malhotra M, Tomaro-Duchesneau C, Saha S, Kahouli I, Prakash S (2013) Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA. International Journal of Nanomedicine 8:2041–2052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manfredi G, Xu Z (2005) Mitochondrial dysfunction and its role in motor neuron degeneration in ALS. Mitochondrion 5:77–87

    Article  CAS  PubMed  Google Scholar 

  • Mangraviti A, Tzeng SY, Kozielski KL, Wang Y, Jin Y, Gullotti D, Pedone M, Buaron N, Liu A, Wilson DR (2015) Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo. ACS Nano 9:1236–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mastorakos P, Zhang C, Berry S, Oh Y, Lee S, Eberhart CG, Woodworth GF, Suk JS, Hanes J (2015) Highly PEGylated DNA nanoparticles provide uniform and widespread gene transfer in the brain. Advanced Healthcare Materials 4:1023–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIver SR, Lee CS, Lee JM, Green SH, Sands MS, Snider BJ, Goldberg MP (2005) Lentiviral transduction of murine oligodendrocytes in vivo. Journal of Neuroscience Research 82:397–403

    Article  CAS  PubMed  Google Scholar 

  • McMorris FA, McKinnon RD (1996) Regulation of oligodendrocyte development and CNS myelination by growth factors: prospects for therapy of demyelinating disease. Brain Pathology 6:313–329

    Article  CAS  PubMed  Google Scholar 

  • McTigue DM, Tripathi RB (2008) The life, death, and replacement of oligodendrocytes in the adult CNS. Journal of Neurochemistry 107:1–19

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Yang F, Ouyang T, Liu B, Wu C, Jiang W (2015) Specific gene expression in mouse cortical astrocytes is mediated by a 1740 bp-GFAP promoter-driven combined adeno-associated virus 2/5/7/8/9. Neuroscience Letters 593:45–50

    Article  CAS  PubMed  Google Scholar 

  • Merienne N, Delzor A, Viret A, Dufour N, Rey M, Hantraye P, Déglon N (2015) Gene transfer engineering for astrocyte-specific silencing in the CNS. Gene Therapy 22:830–839

    Article  CAS  PubMed  Google Scholar 

  • Merrill J, Scolding N (1999) Mechanisms of damage to myelin and oligodendrocytes and their relevance to disease. Neuropathology and Applied Neurobiology 25:435–458

    Article  CAS  PubMed  Google Scholar 

  • Midoux P, Breuzard G, Gomez JP, Pichon C (2008) Polymer-based gene delivery: a current review on the uptake and intracellular trafficking of polyplexes. Current Gene Therapy 8:335–352

    Article  CAS  PubMed  Google Scholar 

  • Milligan ED, Soderquist RG, Malone SM, Mahoney JH, Hughes TS, Langer SJ, Sloane EM, Maier SF, Leinwand LA, Watkins LR (2006) Intrathecal polymer-based interleukin-10 gene delivery for neuropathic pain. Neuron Glia Biology 2:293–308

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyake N, Miyake K, Yamamoto M, Hirai Y, Shimada T (2011) Global gene transfer into the CNS across the BBB after neonatal systemic delivery of single-stranded AAV vectors. Brain Research 1389:19–26

    Article  CAS  PubMed  Google Scholar 

  • Morris VB, Labhasetwar V (2015) Arginine-rich polyplexes for gene delivery to neuronal cells. Biomaterials 60:151–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima H, Uchida K, Kobayashi S, Inukai T, Horiuchi Y, Yayama T, Sato R, Baba H (2007) Rescue of rat anterior horn neurons after spinal cord injury by retrograde transfection of adenovirus vector carrying brain-derived neurotrophic factor gene. Journal of Neurotrauma 24:703–712

    Article  PubMed  Google Scholar 

  • Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage F, Verma I, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263

    Article  CAS  PubMed  Google Scholar 

  • Navarro V, Millecamps S, Geoffroy M, Robert J, Valin A, Mallet J, Le Gal La Salle G (1999) Efficient gene transfer and long-term expression in neurons using a recombinant adenovirus with a neuron-specific promoter. Gene Therapy 6:1884–1892

    Article  CAS  PubMed  Google Scholar 

  • Newland B, Abu-Rub M, Naughton M, Zheng Y, Pinoncely A, Collin E, Dowd E, Wang W, Pandit A (2013) GDNF gene delivery via a 2-(dimethylamino) ethyl methacrylate based cyclized knot polymer for neuronal cell applications. ACS Chemical Neuroscience 4:540–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicchia GP, Frigeri A, Liuzzi GM, Svelto M (2003) Inhibition of aquaporin-4 expression in astrocytes by RNAi determines alteration in cell morphology, growth, and water transport and induces changes in ischemia-related genes. The FASEB Journal 17:1508–1510

    CAS  PubMed  Google Scholar 

  • Niranjan R (2014) The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson’s disease: focus on astrocytes. Molecular Neurobiology 49:28–38

    Article  CAS  PubMed  Google Scholar 

  • Nolte C, Matyash M, Pivneva T, Schipke CG, Ohlemeyer C, Hanisch UK, Kirchhoff F, Kettenmann H (2001) GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33:72–86

    Article  CAS  PubMed  Google Scholar 

  • Nomoto T, Okada T, Shimazaki K, Mizukami H, Matsushita T, Hanazono Y, Kume A, Katsura K-i, Katayama Y, Ozawa K (2003) Distinct patterns of gene transfer to gerbil hippocampus with recombinant adeno-associated virus type 2 and 5. Neuroscience Letters 340:153–157

    Article  CAS  PubMed  Google Scholar 

  • Palfi S, Gurruchaga JM, Ralph GS, Lepetit H, Lavisse S, Buttery PC, Watts C, Miskin J, Kelleher M, Deeley S (2014) Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 383:1138–1146

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2002) Drug and gene delivery to the brain: the vascular route. Neuron 36:555–558

    Article  CAS  PubMed  Google Scholar 

  • Park IK, Lasiene J, Chou SH, Horner PJ, Pun SH (2007) Neuron-specific delivery of nucleic acids mediated by Tet1-modified poly (ethylenimine). The Journal of Gene Medicine 9:691–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peel A, Zolotukhin S, Schrimsher G, Muzyczka N, Reier P (1997) Efficient transduction of green fluorescent protein in spinal cord neurons using adeno-associated virus vectors containing cell-type specific promoters. Gene Therapy 4:16–24

    Article  CAS  PubMed  Google Scholar 

  • Peel AL, Klein RL (2000) Adeno-associated virus vectors: activity and applications in the CNS. Journal of Neuroscience Methods 98:95–104

    Article  CAS  PubMed  Google Scholar 

  • Persidsky Y, Zheng J, Miller D, Gendelman HE (2000) Mononuclear phagocytes mediate blood-brain barrier compromise and neuronal injury during HIV-1-associated dementia. Journal of Leukocyte Biology 68:413–422

    CAS  PubMed  Google Scholar 

  • Petrosyan H, Alessi V, Singh V, Hunanyan A, Levine J, Arvanian V (2014) Transduction efficiency of neurons and glial cells by AAV-1,-5,-9,-rh10 and-hu11 serotypes in rat spinal cord following contusion injury. Gene Therapy 21:991–1000

    Article  CAS  PubMed  Google Scholar 

  • Peviani M, Kurosaki M, Terao M, Lidonnici D, Gensano F, Battaglia E, Tortarolo M, Piva R, Bendotti C (2012) Lentiviral vectors carrying enhancer elements of Hb9 promoter drive selective transgene expression in mouse spinal cord motor neurons. Journal of Neuroscience Methods 205:139–147

    Article  CAS  PubMed  Google Scholar 

  • Pilakka-Kanthikeel S, Atluri VSR, Sagar V, Saxena SK, Nair M (2013) Targeted brain derived neurotropic factors (BDNF) delivery across the blood-brain barrier for neuro-protection using magnetic nano carriers: an in-vitro study. PloS One 8:e62241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polazzi E, Monti B (2010) Microglia and neuroprotection: from in vitro studies to therapeutic applications. Progress in Neurobiology 92:293–315

    Article  PubMed  Google Scholar 

  • Popescu BFG, Lucchinetti CF (2012) Pathology of demyelinating diseases. Annual Review of Pathology: Mechanisms of Disease 7:185–217

    Article  CAS  Google Scholar 

  • Rafi MA, Rao HZ, Passini MA, Curtis M, Vanier MT, Zaka M, Luzi P, Wolfe JH, Wenger DA (2005) AAV-mediated expression of galactocerebrosidase in brain results in attenuated symptoms and extended life span in murine models of globoid cell leukodystrophy. Molecular Therapy 11:734–744

    Article  CAS  PubMed  Google Scholar 

  • Rafii MS, Baumann TL, Bakay RA, Ostrove JM, Siffert J, Fleisher AS, Herzog CD, Barba D, Pay M, Salmon DP (2014) A phase1 study of stereotactic gene delivery of AAV2-NGF for Alzheimer’s disease. Alzheimers Dement 10:571–581

    Article  PubMed  Google Scholar 

  • Rahim A, Wong A, Howe S, Buckley S, Acosta-Saltos A, Elston K, Ward N, Philpott N, Cooper J, Anderson P (2009) Efficient gene delivery to the adult and fetal CNS using pseudotyped non-integrating lentiviral vectors. Gene Therapy 16:509–520

    Article  CAS  PubMed  Google Scholar 

  • Rahim AA, Wong AM, Hoefer K, Buckley SM, Mattar CN, Cheng SH, Chan JK, Cooper JD, Waddington SN (2011) Intravenous administration of AAV2/9 to the fetal and neonatal mouse leads to differential targeting of CNS cell types and extensive transduction of the nervous system. The FASEB Journal 25:3505–3518

    Article  CAS  PubMed  Google Scholar 

  • Rao KS, Reddy MK, Horning JL, Labhasetwar V (2008) TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials 29:4429–4438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao S, Morales AA, Pearse DD (2015) The comparative utility of Viromer RED and lipofectamine for transient Gene introduction into glial cells. BioMed Research International 2015:458624

    PubMed  PubMed Central  Google Scholar 

  • Regan MR, Huang YH, Kim YS, Dykes-Hoberg MI, Jin L, Watkins AM, Bergles DE, Rothstein JD (2007) Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. The Journal of Neuroscience 27:6607–6619

    Article  CAS  PubMed  Google Scholar 

  • Rock RB, Peterson PK (2006) Microglia as a pharmacological target in infectious and inflammatory diseases of the brain. Journal of Neuroimmune Pharmacology 1:117–126

    Article  PubMed  Google Scholar 

  • Rodgers JM, Robinson AP, Miller SD (2013) Strategies for protecting oligodendrocytes and enhancing remyelination in multiple sclerosis. Discovery Medicine 16:53

    PubMed  PubMed Central  Google Scholar 

  • Rogers M-L, Rush RA (2012) Non-viral gene therapy for neurological diseases, with an emphasis on targeted gene delivery. Journal of Controlled Release 157:183–189

    Article  CAS  PubMed  Google Scholar 

  • Romero M, Smith G (1998) Adenoviral gene transfer into the normal and injured spinal cord: enhanced transgene stability by combined administration of temperature-sensitive virus and transient immune blockade. Gene Therapy 5:1612–1621

    Article  CAS  PubMed  Google Scholar 

  • Rungta RL, Choi HB, Lin PJ, Ko RW, Ashby D, Nair J, Manoharan M, Cullis PR, MacVicar BA (2013) Lipid nanoparticle delivery of siRNA to silence neuronal gene expression in the brain. Molecular Therapy--Nucleic Acids 2:e136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samaranch L, San Sebastian W, Kells AP, Salegio EA, Heller G, Bringas JR, Pivirotto P, DeArmond S, Forsayeth J, Bankiewicz KS (2014) AAV9-mediated expression of a non-self protein in nonhuman primate central nervous system triggers widespread neuroinflammation driven by antigen-presenting cell transduction. Molecular Therapy 22:329–337

    Article  CAS  PubMed Central  Google Scholar 

  • San Sebastian W, Samaranch L, Heller G, Kells AP, Bringas J, Pivirotto P, Forsayeth J, Bankiewicz KS (2013) Adeno-associated virus type 6 is retrogradely transported in the non-human primate brain. Gene Therapy 20:1178–1183

    Article  CAS  PubMed  Google Scholar 

  • Sandhu JK, Gardaneh M, Iwasiow R, Lanthier P, Gangaraju S, Ribecco-Lutkiewicz M, Tremblay R, Kiuchi K, Sikorska M (2009) Astrocyte-secreted GDNF and glutathione antioxidant system protect neurons against 6OHDA cytotoxicity. Neurobiology of Disease 33:405–414

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH (1999) Science, medicine, and the future: Parkinson’s disease. BMJ 318:311–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster DJ, Dykstra JA, Riedl MS, Kitto KF, Belur LR, McIvor RS, Elde RP, Fairbanks CA, Vulchanova L (2015) Biodistribution of adeno-associated virus serotype 9 (AAV9) vector after intrathecal and intravenous delivery in mouse. Neuroanatomy and Transgenic Technologies 8:72-85

    Google Scholar 

  • Segovia J, Vergara P, Brenner M (1998) Astrocyte-specific expression of tyrosine hydroxylase after intracerebral gene transfer induces behavioral recovery in experimental parkinsonism. Gene Therapy 5:1650–1655

    Article  CAS  PubMed  Google Scholar 

  • Serramía MJ, Álvarez S, Fuentes-Paniagua E, Clemente MI, Sánchez-Nieves J, Gómez R, de la Mata J, Muñoz-Fernández MÁ (2015) In vivo delivery of siRNA to the brain by carbosilane dendrimer. Journal of Controlled Release 200:60–70

    Article  PubMed  CAS  Google Scholar 

  • Shah L, Yadav S, Amiji M (2013) Nanotechnology for CNS delivery of bio-therapeutic agents. Drug Delivery and Translational Research 3:336–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen F, Fan Y, Su H, Zhu Y, Chen Y, Liu W, Young WL, Yang G-Y (2008) Adeno-associated viral vector-mediated hypoxia-regulated VEGF gene transfer promotes angiogenesis following focal cerebral ischemia in mice. Gene Therapy 15:30–39

    Article  CAS  PubMed  Google Scholar 

  • Shevtsova Z, Malik JM, Michel U, Bahr M, Kugler S (2005) Promoters and serotypes: targeting of adeno-associated virus vectors for gene transfer in the rat central nervous system in vitro and in vivo. Experimental Physiology 90:53–59

    Article  CAS  PubMed  Google Scholar 

  • Shi N, Zhang Y, Zhu C, Boado RJ, Pardridge WM (2001) Brain-specific expression of an exogenous gene after iv administration. Proceedings of the National Academy of Sciences 98:12754–12759

    Article  CAS  Google Scholar 

  • Silvestroni A, Faull RL, Strand AD, Möller T (2009) Distinct neuroinflammatory profile in post-mortem human Huntington’s disease. Neuroreport 20:1098–1103

    Article  PubMed  Google Scholar 

  • Sonawane ND, Szoka FC, Verkman A (2003) Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. The Journal of Biological Chemistry 278:44826–44831

    Article  CAS  PubMed  Google Scholar 

  • Stangel M, Gold R, Gass A, Haas J, Jung S, Elias W, Zettl UK (2006) Current issues in immunomodulatory treatment of multiple sclerosis--a practical approach. Journal of Neurology 253(Suppl 1):I32–I36

    Article  PubMed  CAS  Google Scholar 

  • Steiner J, Haughey N, Li W, Venkatesan A, Anderson C, Reid R, Malpica T, Pocernich C, Butterfield DA, Nath A (2006) Oxidative stress and therapeutic approaches in HIV dementia. Antioxidants & Redox Signaling 8:2089–2100

    Article  CAS  Google Scholar 

  • Su X, Kells AP, Huang EJ, Lee HS, Hadaczek P, Beyer J, Bringas J, Pivirotto P, Penticuff J, Eberling J (2009) Safety evaluation of AAV2-GDNF gene transfer into the dopaminergic nigrostriatal pathway in aged and parkinsonian rhesus monkeys. Human Gene Therapy 20:1627–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Jin K, Clark K, Peel A, Mao X, Chang Q, Simon R, Greenberg D (2003) Adeno-associated virus-mediated delivery of BCL-w gene improves outcome after transient focal cerebral ischemia. Gene Therapy 10:115–122

    Article  CAS  PubMed  Google Scholar 

  • Tan J-KY, Pham B, Zong Y, Perez C, Maris DO, Hemphill A, Miao CH, Matula TJ, Mourad PD, Wei H (2016) Microbubbles and ultrasound increase intraventricular polyplex gene transfer to the brain. Journal of Controlled Release 231:86–93

    Article  CAS  PubMed  Google Scholar 

  • Tekin S, Cummings JL (2002) Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. Journal of Psychosomatic Research 53:647–654

    Article  PubMed  Google Scholar 

  • Teng Z-P, Chen J, Chau L-Y, Galunic N, Regan RF (2004) Adenoviral transfer of the heme oxygenase-1 gene protects striatal astrocytes from heme-mediated oxidative injury. Neurobiology of Disease 17:179–187

    Article  CAS  PubMed  Google Scholar 

  • Thomas CE, Schiedner G, Kochanek S, Castro MG, Löwenstein PR (2000) Peripheral infection with adenovirus causes unexpected long-term brain inflammation in animals injected intracranially with first-generation, but not with high-capacity, adenovirus vectors: toward realistic long-term neurological gene therapy for chronic diseases. Proceedings of the National Academy of Sciences 97:7482–7487

    Article  CAS  Google Scholar 

  • Tinsley RB, Vesey MJ, Barati S, Rush RA, Ferguson IA (2004) Improved non-viral transfection of glial and adult neural stem cell lines and of primary astrocytes by combining agents with complementary modes of action. The Journal of Gene Medicine 6:1023–1032

    Article  CAS  PubMed  Google Scholar 

  • Tosi G, Bortot B, Ruozi B, Dolcetta D, Vandelli M, Forni F, Severini G (2013) Potential use of polymeric nanoparticles for drug delivery across the blood-brain barrier. Current Medicinal Chemistry 20:2212–2225

    Article  CAS  PubMed  Google Scholar 

  • Towne C, Schneider B, Kieran D, Redmond D, Aebischer P (2010) Efficient transduction of non-human primate motor neurons after intramuscular delivery of recombinant AAV serotype 6. Gene Therapy 17:141–146

    Article  CAS  PubMed  Google Scholar 

  • Tuinstra HM, Ducommun MM, Briley WE, Shea LD (2013) Gene delivery to overcome astrocyte inhibition of axonal growth: an in vitro model of the glial scar. Biotechnology and Bioengineering 110:947–957

    Article  CAS  PubMed  Google Scholar 

  • Tuinstra HM, Aviles MO, Shin S, Holland SJ, Zelivyanskaya ML, Fast AG, Ko SY, Margul DJ, Bartels AK, Boehler RM (2012) Multifunctional, multichannel bridges that deliver neurotrophin encoding lentivirus for regeneration following spinal cord injury. Biomaterials 33:1618–1626

    Article  CAS  PubMed  Google Scholar 

  • Uylings HB, De Brabander J (2002) Neuronal changes in normal human aging and Alzheimer’s disease. Brain and Cognition 49:268–276

    Article  PubMed  Google Scholar 

  • Van Spronsen M, Hoogenraad CC (2010) Synapse pathology in psychiatric and neurologic disease. Current Neurology and Neuroscience Reports 10:207–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vartak-Sharma N, Gelman BB, Joshi C, Borgamann K, Ghorpade A (2014) Astrocyte elevated gene-1 is a novel modulator of HIV-1-associated neuroinflammation via regulation of nuclear factor-kappaB signaling and excitatory amino acid transporter-2 repression. The Journal of Biological Chemistry 289:19599–19612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Bernhardi R, Eugenín-von Bernhardi L, Eugenín J (2015) Microglial cell dysregulation in brain aging and neurodegeneration. Frontiers in Aging Neuroscience 7:124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Von Bernhardi R, Ramirez G, De Ferrari GV, Inestrosa NC (2003) Acetylcholinesterase induces the expression of the beta-amyloid precursor protein in glia and activates glial cells in culture. Neurobiology of Disease 14:447–457

    Article  CAS  Google Scholar 

  • Von Jonquieres G, Mersmann N, Klugmann CB, Harasta AE, Lutz B, Teahan O, Housley GD, Fröhlich D, Krämer-Albers E-M, Klugmann M (2013) Glial promoter selectivity following AAV-delivery to the immature brain. PloS One 8:e65646

    Article  CAS  Google Scholar 

  • Vos T, Barber RM, Bell B, Bertozzi-Villa A, Biryukov S, Bolliger I, Charlson F, Davis A, Degenhardt L, Dicker D (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet 386:743–800

    Article  Google Scholar 

  • Wake H, Moorhouse AJ, Miyamoto A, Nabekura J (2013) Microglia: actively surveying and shaping neuronal circuit structure and function. Trends in Neurosciences 36:209–217

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Wang S (2006) Astrocytic expression of transgene in the rat brain mediated by baculovirus vectors containing an astrocyte-specific promoter. Gene Therapy 13:1447–1456

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Wang C, Clark K, Sferra T (2003a) Recombinant AAV serotype 1 transduction efficiency and tropism in the murine brain. Gene Therapy 10:1528–1534

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Yang SH, Tzeng SF (2015) MicroRNA-145 as one negative regulator of astrogliosis. Glia 63:194–205

    Article  PubMed  Google Scholar 

  • Wang D, Zhong L, Nahid MA, Gao G (2014) The potential of adeno-associated viral vectors for gene delivery to muscle tissue. Expert Opinion on Drug Delivery 11:345–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang DD, Bordey A (2008) The astrocyte odyssey. Progress in Neurobiology 86:342–367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J-Q, Chen Q, Wang X, Wang Q-C, Wang Y, Cheng H-P, Guo C, Sun Q, Chen Q, Tang T-S (2013) Dysregulation of mitochondrial calcium signaling and superoxide flashes cause mitochondrial genomic DNA damage in Huntington disease. The Journal of Biological Chemistry 288:3070–3084

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Lin F, Wang J, Wu J, Han R, Zhu L, Zhang G, DiFiglia M, Qin Z (2012) Truncated N-terminal huntingtin fragment with expanded-polyglutamine (htt552-100Q) suppresses brain-derived neurotrophic factor transcription in astrocytes. Acta Biochim Biophys Sin: gmr125

  • Wang X, Li X, Xu L, Zhan Y, Yaish-Ohad S, Erhardt JA, Barone FC, Feuerstein GZ (2003b) Up-regulation of secretory leukocyte protease inhibitor (SLPI) in the brain after ischemic stroke: adenoviral expression of SLPI protects brain from ischemic injury. Molecular Pharmacology 64:833–840

    Article  CAS  PubMed  Google Scholar 

  • Watson DJ, Kobinger GP, Passini MA, Wilson JM, Wolfe JH (2002) Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins. Molecular Therapy 5:528–B221

    Article  CAS  PubMed  Google Scholar 

  • Weinberg M, Blake B, Samulski RJ, Mccown TJ (2011) The influence of epileptic neuropathology and prior peripheral immunity on CNS transduction by rAAV2 and rAAV5. Gene Therapy 18:961–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weismann CM, Ferreira J, Keeler AM, Su Q, Qui L, Shaffer SA, Xu Z, Gao G, Sena-Esteves M (2015) Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan. Human Molecular Genetics 24:4353–4364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong HL, XY W, Bendayan R (2012) Nanotechnological advances for the delivery of CNS therapeutics. Advanced Drug Delivery Reviews 64:686–700

    Article  CAS  PubMed  Google Scholar 

  • Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harbor Perspectives in Medicine 2:a006346

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia C-F, Yin H, Borlongan CV, Chao J, Chao L (2004) Adrenomedullin gene delivery protects against cerebral ischemic injury by promoting astrocyte migration and survival. Human Gene Therapy 15:1243–1254

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Wang T, Sun GY, Ding S (2010) Specific disruption of astrocytic Ca 2+ signaling pathway in vivo by adeno-associated viral transduction. Neuroscience 170:992–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin H, Sha X, Jiang X, Zhang W, Chen L, Fang X (2012) Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials 33:8167–8176

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Li S, Wang H, Guo Y, Gessler DJ, Cao C, Su Q, Kramer J, Zhong L, Ahmed SS (2014) Global CNS transduction of adult mice by intravenously delivered rAAVrh. 8 and rAAVrh. 10 and nonhuman primates by rAAVrh. 10. Molecular Therapy 22:1299–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Yang W-H, Chen S-S, Ma B-F, Li B, Lu T, T-Y Q, Klein RL, Zhao L-R, Duan W-M (2013) Pre-immunization with an intramuscular injection of AAV9-human erythropoietin vectors reduces the vector-mediated transduction following re-administration in rat brain. PloS One 8:e63876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young D, Fong DM, Lawlor PA, Wu A, Mouravlev A, McRae M, Glass M, Dragunow M, During MJ (2014) Adenosine kinase, glutamine synthetase and EAAT2 as gene therapy targets for temporal lobe epilepsy. Gene Therapy 21:1029–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yurek D, Hasselrot U, Cass W, Sesenoglu-Laird O, Padegimas L, Cooper M (2015) Age and lesion-induced increases of GDNF transgene expression in brain following intracerebral injections of DNA nanoparticles. Neuroscience 284:500–512

    Article  CAS  PubMed  Google Scholar 

  • Yurek DM, Fletcher AM, Smith GM, Seroogy KB, Ziady AG, Molter J, Kowalczyk TH, Padegimas L, Cooper MJ (2009) Long-term transgene expression in the central nervous system using DNA nanoparticles. Molecular Therapy 17:641–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Yang B, Mu X, Ahmed SS, Su Q, He R, Wang H, Mueller C, Sena-Esteves M, Brown R (2011) Several rAAV vectors efficiently cross the blood–brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Molecular Therapy 19:1440–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Schlachetzki F, Zhang Y-F, Boado RJ, Pardridge WM (2004) Normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism with intravenous nonviral gene therapy and a brain-specific promoter. Human Gene Therapy 15:339–350

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Strappe PM, Lever AM, Franklin RJ (2003) Lentiviral vectors for gene delivery to normal and demyelinated white matter. Glia 42:59–67

    Article  PubMed  Google Scholar 

  • Zheng JC, Huang Y, Tang K, Cui M, Niemann D, Lopez A, Morgello S, Chen S (2008) HIV-1-infected and/or immune-activated macrophages regulate astrocyte CXCL8 production through IL-1β and TNF-α: involvement of mitogen-activated protein kinases and protein kinase R. Journal of Neuroimmunology 200:100–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinger A, Barcia C, Herrero MT, Guillemin GJ (2011) The involvement of neuroinflammation and kynurenine pathway in Parkinson’s disease. Parkinson’s Disease 2011:716859

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Ms. Kathleen Borgmann for her help with critical reading and scientific writing of the manuscript, tables, and figures. Ms. Lenore Price and Mr. Timothy Van Treuren proofread the manuscript. Dr. Irma Cisneros and Dr. Richa Pandey helped in making figures. The authors also thank all other members of Ghorpade laboratory at UNT Health Science Center and Labhasetwar laboratory at Cleveland Clinic for their help during the writing of the manuscript. National Institute of Neurological Disorders and Stroke (NINDS) awards R01 NS048837 to AG and R01 NS070896 to VL supported the presented work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuja Ghorpade.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest associated to the presented work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, C.R., Labhasetwar, V. & Ghorpade, A. Destination Brain: the Past, Present, and Future of Therapeutic Gene Delivery. J Neuroimmune Pharmacol 12, 51–83 (2017). https://doi.org/10.1007/s11481-016-9724-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-016-9724-3

Keywords

Navigation