Skip to main content

Advertisement

Log in

TNF-α/NF-κB Signaling in the CNS: Possible Connection to EPHB2

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Tumor necrosis factor-alpha, TNF-α, is a cytokine that is a well-known factor in multiple disease conditions and is recognized for its major role in central nervous system signaling. TNF-α signaling is most commonly associated with neurotoxicity, but in some conditions it has been found to be neuroprotective. TNF-α has long been known to induce nuclear factor-kappa B, NF-κB, signaling by, in most cases, translocating the p65 (RelA) DNA binding factor to the nucleus. p65 is a key member of NF-κB, which is well established as a family of transcription factors that regulates many signaling events, including growth and process development, in neuronal cell populations. NF-κB has been shown to affect both the receiving aspect of neuronal signaling events in dendritic development as well as the sending of neuronal signals in axonal development. In both cases, NK-κB functions as a promoter and/or inhibitor of growth, depending on the environmental conditions and signaling cascade. In addition, NF-κB is involved in memory formation or neurogenesis, depending on the region of the brain in which the signaling occurs. The ephrin (Eph) receptor family represents a subfamily of receptor tyrosine kinases, RTKs, which received much attention due to its potential involvement in neuronal cell health and function. There are two subsets of ephrin receptors, Eph A and Eph B, each with distinct functions in cardiovascular and skeletal development and axon guidance and synaptic plasticity. The presence of multiple binding sites for NF-κB within the regulatory region of EphB2 gene and its potential regulation by NF-κB pathway suggests that TNF-α may modulate EphB2 via NF-κB and that this may contribute to the neuroprotective activity of TNF-α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albensi BC, Mattson MP (2000) Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse 35:151–159

    Article  CAS  PubMed  Google Scholar 

  • Álvarez A, Cacabelos R, Sanpedro C, García-Fantini M, Aleixandre M (2007) Serum TNF-alpha levels are increased and correlate negatively with free IGF-1 in Alzheimer disease. Neurobiol Aging 28:533–536

    Article  PubMed  Google Scholar 

  • Arvanitis D, Davy A (2008) Eph/ephrin signaling: networks. Genes Dev 22:416–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baldwin AS (1996) The NF-kappaB AND IkappaB proteins: new discoveries and insights. Annu Rev Immunol 14:649–681

    Article  CAS  PubMed  Google Scholar 

  • Barger SW, Horster D, Furukawa K, Goodman Y, Krieglstein J, Mattson MP (1995) Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa b-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc Natl Acad Sci U S A 92:9328–9332

    Google Scholar 

  • Baud V, Karin M (2001) Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11(9):372–377

    Article  CAS  PubMed  Google Scholar 

  • Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, Malenka RC (2002) Control of synaptic strength by glial TNF-alpha. Science 295(5563):2282–2285

    Article  CAS  PubMed  Google Scholar 

  • Botchkina GI, Meistrell ME, Botchkina IL, Tracey KJ (1997) Expression of TNF and TNF receptors (p55 and P75) in the rat brain after focal cerebral ischemia. Mol Med 3:765–781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bruce-Keller AJ, Geddes JW, Knapp PE, McFall RW, Keller JN, Holtsberg FW, Parthasarathy S, Steiner SM, Mattson MP (1999) Anti-death properties of TNF against metabolic poisoning: mitochondrial stabilization by MnSOD. J Neuroimmunol 93:53–71

    Article  CAS  PubMed  Google Scholar 

  • Calao M, Burny A, Quivy V, Dekoninck A, Van Lint C (2008) A pervasive role of histone acetyltransferases and deacetylases in an NF-kappaB-signaling code. Trends Biochem Sci 33:339–349

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhou Y, Mueller-Steiner S, Chen LF, Kwon H, Yi S, Mucke L, Gan L (2005) SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-κB signaling. J Biol Chem 280:40364–40374

    Article  CAS  PubMed  Google Scholar 

  • Chu W (2013) Tumor necrosis factor. Cancer Lett 328:222–225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cissé M, Halabisky B, Harris J, Devidze N, Dubal DB, Sun B, Orr A, Lotz G, Kim DH, Hamto P, Ho K, Yu GQ, Mucke L (2011) Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature 469:47–52

    Article  PubMed Central  PubMed  Google Scholar 

  • Dopp JM, Mackenzie-Graham A, Otero GC, Merrill JE (1997) Differential expression, cytokine modulation, and specific functions of type-1 and type-2 tumor necrosis factor receptors in rat glia. J Neuroimmunol 75:104–112

    Article  CAS  PubMed  Google Scholar 

  • Duh EJ, Maury WJ, Folks TM, Fauci AS, Rabson AB (1989) Tumor necrosis factor alpha activates Human Immunodeficiency Virus Type 1 through induction of nuclear factor binding to the NF-kappa B sites in the long terminal repeat. Proc Natl Acad Sci U S A 86:5974–5978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ethell DW (2010) An amyloid-notch hypothesis for Alzheimer’s disease. Neuroscientist 16:614–617

    Article  CAS  PubMed  Google Scholar 

  • Farré D, Roset R, Huerta M, Adsuara JE, Roselló L, Albà MM, Messeguer X (2003) Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res 31:3651–3653

    Article  PubMed Central  PubMed  Google Scholar 

  • Fiala M, Looney DJ, Stins M, Way DD, Zhang L, Gan X, Chiappelli F, Schweitzer ES, Shapshak P, Weinand M, Graves MC, Witte M, Kim KS (1997) TNF-alpha opens a paracellular route for HIV-1 invasion across the blood–brain barrier. Mol Med 3:553–564

    CAS  PubMed Central  PubMed  Google Scholar 

  • Figiel I, Dzwonek K (2007) TNFα and TNF receptor 1 expression in the mixed neuronal–glial cultures of hippocampal dentate gyrus exposed to glutamate or trimethyltin. Brain Res 1131:17–28

    Article  CAS  PubMed  Google Scholar 

  • Fontaine V, Mohand-Said S, Hanoteau N, Fuchs C, Pfizenmaier K, Eisel U (2002) Neurodegenerative and neuroprotective effects of tumor necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. J Neurosci 2:RC216

    Google Scholar 

  • Gabbita SP, Srivastava MK, Eslami P, Johnson MF, Kobritz NK, Tweedie D, Greig NH, Zemlan FP, Sharma SP, Harris-White ME (2012) Early intervention with a small molecule inhibitor for tumor necrosis factor-α prevents cognitive deficits in a triple transgenic mouse model of Alzheimer’s disease. J Neuroinflammation 9:99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ganchi PA, Sun SC, Greene WC, Ballard DW (1992) IkappaB/MAD-3 masks the nuclear localization signal of NF-kappaB P65 and requires the transactivation domain to inhibit NF-kappaB p65 DNA binding. Mol Biol Cell 3:1339–1352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia M, Vanhoutte P, Pages C, Besson M, Brouillet E, Caboche J (2002) The mitochondrial toxin 3-nitropropionic acid induces striatal neurodegeneration via a C-Jun N-terminal kinase/c-Jun module. J Neurosci 22:2174–2184

    CAS  PubMed  Google Scholar 

  • Grunwald IC, Korte M, Wolfer D, Wilkinson GA, Unsicker K, Lipp H, Bonhoeffer T, Klein R (2001) Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron 32:1027–1040

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez H, Davies AM (2011) Regulation of neural process growth, elaboration and structural plasticity by NF-κB. Trends Neurosci 34:316–325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayden M, Ghosh S (2008) Shared principles in NF-κB signaling. Cell 132:344–362

    Article  CAS  PubMed  Google Scholar 

  • Henkel T, Zabel U, Van Zee K, Muller JM, Fanning E, Baeuerle PA (1992) Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-κB subunit. Cell 68:1121–1133

    Article  CAS  PubMed  Google Scholar 

  • Henkemeyer M (2003) Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J Cell Biol 163:1313–1326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoffmann A, Baltimore D (2006) Circuitry of nuclear factor kappaB signaling. Immunol Rev 210:171–186

    Article  PubMed  Google Scholar 

  • Janelsins MC, Mastangelo MA, Oddo S, LaFerla FM, Federoff HJ, Bowers WJ (2005) Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer’s disease mice. J Neuroinflammation 2:23

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaltschmidt B, Kaltschmidt C (2009) NF-κB in the nervous system. Cold Spring Harb Perspect Biol 1:A001271

    Article  PubMed Central  PubMed  Google Scholar 

  • Kinouchi K, Brown G, Donner DB (1991) Identification and characterization of receptors for tumor necrosis factor-alpha in the brain. Biochem Biophys Res Commun 181:1532–1538

    Article  CAS  PubMed  Google Scholar 

  • Kuno R, Yoshida Y, Nitta A, Nabeshima T, Wang J, Sonobe Y, Kawanokuchi J, Takeuchi H, Mizuno T, Suzumura A (2006) The role of TNF-alpha and its receptors in the production of NGF and GDNF by astrocytes. Brain Res 1116:12–18

    Article  CAS  PubMed  Google Scholar 

  • Lacor PN, Buniel MC, Furlow PW, Sanz Clemente A, Velasco PT, Wood M, Viola KL, Klein WL (2007) Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807

    Article  CAS  PubMed  Google Scholar 

  • Lane BR, Markovitz DM, Woodford NL, Rochford R, Strieter RM, Coffey MJ (1999) TNF-α inhibits HIV-1 replication in peripheral blood monocytes and alveolar macrophages by inducing the production of RANTES and decreasing C-C Chemokine Receptor 5 (CCR5) expression. J Immunol 163:3653–3661

    CAS  PubMed  Google Scholar 

  • Lee YJ, Choi DY, Choi IS, Han JY, Jeong HS, Han SB, Oh KW, Hong JT (2011) Inhibitory effect of a tyrosine-fructose Maillard reaction product, 2,4-bis(p-hydroxyphenyl)-2-butenal on amyloid-β generation and inflammatory reactions via inhibition of NF-κB and STAT3 activation in cultured astrocytes and microglial BV-2 cells. J Neuroinflammation 8:132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leghmari K, Bennasser Y, Bahraoui E (2008) HIV-1 Tat protein induces IL-10 production in monocytes by classical and alternative NF-κB pathways. Eur J Cell Biol 87:947–962

    Article  CAS  PubMed  Google Scholar 

  • Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501

    Article  CAS  PubMed  Google Scholar 

  • Marchetti L, Klein M, Schlett K, Pfizenmaier K, Eisel UL (2004) Tumor Necrosis Factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation: essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-κB pathway. J Biol Chem 279:32869–32881

    Article  CAS  PubMed  Google Scholar 

  • Medeiros R, Prediger RD, Passos GF, Pandolfo P, Duarte FS, Franco JL, Dafre AL, Di Giunta G, Figueiredo CP, Takahashi RN, Campos MM, Calixto JB (2007) Connecting TNF-α signaling pathways to iNOS expression in a mouse model of Alzheimer’s disease: relevance for the behavioral and synaptic deficits induced by amyloid β protein. J Neurosci 27:5394–5404

    Article  CAS  PubMed  Google Scholar 

  • Mehlhorn G, Hollborn M, Schliebs R (2000) Induction of cytokines in glial cells surrounding cortical beta-amyloid plaques in transgenic Tg2576 mice with Alzheimer pathology. Int J Dev Neurosci 18:423–431

    Article  CAS  PubMed  Google Scholar 

  • Memet S (2006) NF-κB functions in the nervous system: from development to disease. Biochem Pharmacol 72:1180–1195

    Article  CAS  PubMed  Google Scholar 

  • Murai KK, Pasquale EB (2004) Eph receptors, ephrins, and synaptic function. Neuroscientist 10:304–314

    Article  CAS  PubMed  Google Scholar 

  • Nakada M, Niska JA, Tran NL, McDonough WS, Berens ME (2005) EphB2/R-Ras signaling regulates glioma cell adhesion, growth, and invasion. Am J Pathol 167:565–576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakada M, Anderson EM, Demuth T, Nakada S, Reavie LB, Drake KL, Hoelzinger DB, Berens ME (2010) The phosphorylation of Ephrin-B2 ligand promotes glioma cell migration and invasion. Int J Cancer 126:1155–1165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neumann H, Scheigreiter R, Yamashita T, Rosenkranz K, Wekerle H, Barde Y (2002) Tumor necrosis factor inhibits neurite outgrowth and branching of hippocampal neurons by a rho-dependent mechanism. J Neurosci 22:854–862

    CAS  PubMed  Google Scholar 

  • Penzes P, Beeser A, Chernoff J, Schiller MR, Eipper BA, Mains RE, Huganir RL (2003) Rapid induction of dendritic spine morphogenesis by trans-synaptic EphrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron 37:263–274

    Article  CAS  PubMed  Google Scholar 

  • Pizzi M, Spano P (2006) Distinct roles of diverse nuclear factor-κB complexes in neuropathological mechanisms. Eur J Pharmacol 545:22–28

    Article  CAS  PubMed  Google Scholar 

  • Quivy V, Van Lint C (2004) Regulation at multiple levels of NF-kappaB-mediated transactivation by protein acetylation. Biochem Pharmacol 68:1221–1229

    Article  CAS  PubMed  Google Scholar 

  • Ruan L, Kang Z, Le Y (2009) Amyloid deposition and inflammation in APPswe/PS1dE9 mouse model of Alzheimer’s disease. Curr Alzheim Res 6:531–540

    Article  CAS  Google Scholar 

  • Saha RN, Pahan K (2003) Tumor necrosis factor-α at the crossroads of neuronal life and death during HIV-associated dementia. J Neurochem 86:1057–1071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saha RN, Liu X, Pahan K (2006) Up-regulation of BDNF in astrocytes by TNF-α: a case for the neuroprotective role of cytokine. J NeuroImmune Pharmacol 1:212–222

    Article  PubMed Central  PubMed  Google Scholar 

  • Sairanen TR, Lindsberg PJ, Brenner M, Carpén O, Sirén AL (2001) Differential cellular expression of tumor necrosis factor-α and type I tumor necrosis factor receptor after transient global forebrain ischemia. J Neurol Sci 186:87–99

    Article  CAS  PubMed  Google Scholar 

  • Srivastava SK, Ramana KV (2009) Focus on molecules: nuclear factor-kappaB. Exp Eye Res 88:2–3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Surawska H, Ma P, Salgia R (2004) The role of Ephrins and Eph receptors in cancer. Cytokine Growth Fact Rev 15:419–433

    Article  CAS  Google Scholar 

  • Tang XX, Evans AE, Zhao H, Cnaan A, Brodeur GM, Ikegaki N (2001) Association among EPHB2, TrkA, and MYCN expression in low-stage neuroblastomas. Med Pediatr Oncol 36:80–82

    Article  CAS  PubMed  Google Scholar 

  • Tarkowski E, Blennow K, Wallin A, Tarkowski A (1999) Intracerebral production of tumor necrosis factor-alpha, a local neuroprotective agent, in Alzheimer disease and vascular dementia. J Clin Immunol 19:223–230

    Article  CAS  PubMed  Google Scholar 

  • Tarkowski E, Andreasen N, Tarkowski A, Blennow K (2003) Intrathecal inflammation precedes development of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 74:1200–1205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tchélingérian J, Monge M, Le Saux F, Zalc B, Jacque C (1995) Differential oligodendroglial expression of the tumor necrosis factor receptors in vivo and in vitro. J Neurochem 65:2377–2380

    Article  PubMed  Google Scholar 

  • Terai K, Matsuo A, McGeer PL (1996) Enhancement of immunoreactivity for NF-kappa B in the hippocampal formation and cerebral cortex of Alzheimer’s disease. Brain Res 735:159–168

    Article  CAS  PubMed  Google Scholar 

  • Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65

    Article  CAS  PubMed  Google Scholar 

  • Wong G, Goeddel D (1988) Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science 242:941–944

    Article  CAS  PubMed  Google Scholar 

  • Yuferov V, Ho A, Morgello S, Yang Y, Ott J, Kreek MJ (2013) Expression of ephrin receptors and ligands in postmortem brains of HIV-infected subjects with and without cognitive impairment. J Neuroimmune Pharmacol 8:333–344

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao M, Cribbs DH, Anderson AJ, Cummings BJ, Su JH, Wasserman AJ, Cotman CW (2003) The induction of the TNFalpha death domain signaling pathway in Alzheimer’s disease brain. Neurochem Res 28:307–318

    Article  CAS  PubMed  Google Scholar 

  • Zou JY, Crews FT (2005) TNFα potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NFκB inhibition. Brain Res 1034:11–24

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank past and present members of the Center for Neurovirology for their insightful discussion and sharing of ideas and reagents. This work was supported by a grant awarded by the NIH to KK.

Conflict of interests

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel Khalili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozniak, P.D., White, M.K. & Khalili, K. TNF-α/NF-κB Signaling in the CNS: Possible Connection to EPHB2. J Neuroimmune Pharmacol 9, 133–141 (2014). https://doi.org/10.1007/s11481-013-9517-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-013-9517-x

Keywords

Navigation