Skip to main content

Advertisement

Log in

Rodent Models of HAND and Drug Abuse: Exogenous Administration of Viral Protein(s) and Cocaine

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Humans and chimpanzees are the natural hosts for HIV. Non-human primate models of SIV/SHIV infection in rhesus, cynomologus and pigtail macaques have been used extensively as excellent model systems for pathogenesis and vaccine studies. However, owing to the variability of disease progression in infected macaques, a phenomenon identical to humans, coupled with their prohibitive costs, there exists a critical need for the development of small-animal models in which to study the untoward effects of HIV-1 infection. Owing to the fact that rodents are not the natural permissive hosts for lentiviral infection, development of small animal models for studying virus infection has used strategies that circumvent the steps of viral entry and infection. Such strategies involve overexpression of toxic viral proteins, SCID mice engrafted with the human PBLs or macrophages, and EcoHIV chimeric virus wherein the gp120 of HIV-1 was replaced with the gp80 of the ecotropic murine leukemia virus. Additional strategy that is often used by investigators to study the toxic effect of viral proteins involves direct stereotactic injection of the viral protein(s) into specific brain regions. The present report is a compilation of the applications of direct administration of Tat into the striatum to mimic the effects of the viral neurotoxin in the CNS. Added advantage of this model is that it is also amenable to repeated intraperitoneal cocaine injections, thereby allowing the study of the additive/synergistic effects of both the viral protein and cocaine. Such a model system recapitulates aspects of HAND in the context of drug abuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aksenov MY, Hasselrot U, Bansal AK, Wu G, Nath A, Anderson C, Mactutus CF, Booze RM (2001) Oxidative damage induced by the injection of HIV-1 Tat protein in the rat striatum. Neurosci Lett 305:5–8

    Google Scholar 

  • Anthony JC, Vlahov D, Nelson KE, Cohn S, Astemborski J, Solomon L (1991) New evidence on intravenous cocaine use and the risk of infection with human immunodeficiency virus type 1. Am J Epidemiol 134:1175–1189

    PubMed  CAS  Google Scholar 

  • Bagasra O, Pomerantz RJ (1993) Human immunodeficiency virus type 1 replication in peripheral blood mononuclear cells in the presence of cocaine. J Infect Dis 168:1157–1164

    Article  PubMed  CAS  Google Scholar 

  • Baldwin GC, Tashkin DP, Buckley DM, Park AN, Dubinett SM, Roth MD (1997) Marijuana and cocaine impair alveolar macrophage function and cytokine production. Am J Respir Crit Care Med 156:1606–1613

    PubMed  CAS  Google Scholar 

  • Baldwin GC, Roth MD, Tashkin DP (1998) Acute and chronic effects of cocaine on the immune system and the possible link to AIDS. J Neuroimmunol 83:133–138

    Article  PubMed  CAS  Google Scholar 

  • Bansal AK, Mactutus CF, Nath A, Maragos W, Hauser KF, Booze RM (2000) Neurotoxicity of HIV-1 proteins gp120 and Tat in the rat striatum. Brain Res 879:42–49

    Google Scholar 

  • Cayrol R, Wosik K, Berard JL, Dodelet-Devillers A, Ifergan I, Kebir H, Haqqani AS, Kreymborg K, Krug S, Moumdjian R, Bouthillier A, Becher B, Arbour N, David S, Stanimirovic D, Prat A (2008) Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat Immunol 9:137–145

    Article  PubMed  CAS  Google Scholar 

  • Chaisson RE, Bacchetti P, Osmond D, Brodie B, Sande MA, Moss AR (1989) Cocaine use and HIV infection in intravenous drug users in San Francisco. JAMA 261:561–565

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Swartz KR, Toborek M (2009) Vessel microport technique for applications in cerebrovascular research. J Neurosci Res 87:1718–1727

    Article  PubMed  CAS  Google Scholar 

  • Chiasson MA, Stoneburner RL, Hildebrandt DS, Ewing WE, Telzak EE, Jaffe HW (1991) Heterosexual transmission of HIV-1 associated with the use of smokable freebase cocaine (crack). AIDS 5:1121–1126

    Article  PubMed  CAS  Google Scholar 

  • Doherty MC, Garfein RS, Monterroso E, Brown D, Vlahov D (2000) Correlates of HIV infection among young adult short-term injection drug users. AIDS 14:717–726

    Article  PubMed  CAS  Google Scholar 

  • Eisenstein TK, Hilburger ME (1998) Opioid modulation of immune responses: effects on phagocyte and lymphoid cell populations. J Neuroimmunol 83:36–44

    Article  PubMed  CAS  Google Scholar 

  • Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, Berman JW (2006) CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci 26:1098–1106

    Google Scholar 

  • Fiala M, Gan XH, Zhang L, House SD, Newton T, Graves MC, Shapshak P, Stins M, Kim KS, Witte M, Chang SL (1998) Cocaine enhances monocyte migration across the blood–brain barrier. Cocaine’s connection to AIDS dementia and vasculitis? Adv Exp Med Biol 437:199–205

    Article  PubMed  CAS  Google Scholar 

  • Friedman H, Newton C, Klein TW (2003) Microbial infections, immunomodulation, and drugs of abuse. Clin Microbiol Rev 16:209–219

    Article  PubMed  CAS  Google Scholar 

  • Hayman M, Arbuthnott G, Harkiss G, Brace H, Filippi P, Philippon V, Thomson D, Vigne R, Wright A (1993) Neurotoxicity of peptide analogues of the transactivating protein tat from Maedi-Visna virus and human immunodeficiency virus. Neuroscience 53:1–6

    Google Scholar 

  • Huang W, Rha GB, Chen L, Seelbach MJ, Zhang B, Andras IE, Bruemmer D, Hennig B, Toborek M (2010) Inhibition of telomerase activity alters tight junction protein expression and induces transendothelial migration of HIV-1-infected cells. Am J Physiol Heart Circ Physiol 298:H1136–H1145

    Article  PubMed  CAS  Google Scholar 

  • Itoh K, Mehraein P, Weis S (2000) Neuronal damage of the substantia nigra in HIV-1 infected brains. Acta Neuropathol 99:376–384

    Article  PubMed  CAS  Google Scholar 

  • Jones M, Olafson K, Del Bigio MR, Peeling J, Nath A (1998) Intraventricular injection of human immunodeficiency virus type 1 (HIV-1) tat protein causes inflammation, gliosis, apoptosis, and ventricular enlargement. J Neuropathol Exp Neurol 57:563–570

    Google Scholar 

  • Kim BO, Liu Y, Ruan Y, Xu ZC, Schantz L, He JJ (2003) Neuropathologies in transgenic mice expressing human immunodeficiency virus type 1 Tat protein under the regulation of the astrocyte-specific glial fibrillary acidic protein promoter and doxycycline. Am J Pathol 162:1693–1707

    Google Scholar 

  • Klein TW, Matsui K, Newton CA, Young J, Widen RE, Friedman H (1993) Cocaine suppresses proliferation of phytohemagglutinin-activated human peripheral blood T-cells. Int J Immunopharma 15:77–86

    Article  CAS  Google Scholar 

  • Larrat EP, Zierler S (1993) Entangled epidemics: cocaine use and HIV disease. J Psychoactive Drugs 25:207–221

    Article  PubMed  CAS  Google Scholar 

  • Mao JT, Huang M, Wang J, Sharma S, Tashkin DP, Dubinett SM (1996) Cocaine down-regulates IL-2-induced peripheral blood lymphocyte IL-8 and IFN-gamma production. Cell Immunol 172:217–223

    Article  PubMed  CAS  Google Scholar 

  • Meucci O, Fatatis A, Simen AA, Bushell TJ, Gray PW, Miller RJ (1998) Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci U S A 95:14500–14505

    Google Scholar 

  • Meucci O, Fatatis A, Simen AA, Miller RJ (2000) Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc Natl Acad Sci U S A 97:8075–8080

    Google Scholar 

  • Nair MPN, Mahajan S, Hou J, Sweet AM, Schwartz SA (2000) The stress hormone, cortisol, synergizes with HIV-1 gp-120 to induce apoptosis of normal human peripheral blood mononuclear cells. Cell Mol Biol 46:1227–1238, Noisy-le-grand

    PubMed  CAS  Google Scholar 

  • Persidsky Y, Limoges J, McComb R, Bock P, Baldwin T, Tyor W, Patil A, Nottet HS, Epstein L, Gelbard H, Flanagan E, Reinhard J, Pirruccello SJ, Gendelman HE (1996) Human immunodeficiency virus encephalitis in SCID mice. Am J Pathol 149:1027–1053

    Google Scholar 

  • Persidsky Y, Gendelman HE (2002) Murine models for human immunodeficiency virus type1-associated dementia: the development of new treatment testing paradigms. J Neurovirol 8 Suppl 2:49–52

    Google Scholar 

  • Peterson PK, Sharp BM, Gekker G, Portoghese PS, Sannerud K, Balfour HH (1990) Morphine promotes the growth of HIV-1 in human peripheral blood mononuclear cell cocultures. AIDS 4:869–873

    Article  PubMed  CAS  Google Scholar 

  • Philippon V, Vellutini C, Gambarelli D, Harkiss G, Arbuthnott G, Metzger D, Roubin R, Filippi P (1994) The basic domain of the lentiviral Tat protein is responsible for damages in mouse brain: involvement of cytokines. Virology 205:519–529

    Google Scholar 

  • Reid W et al. (2001) An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc Natl Acad Sci U S A 98:9271–9276

    Google Scholar 

  • Roth MD, Tashkin DP, Choi R, Jamieson BD, Zack JA, Baldwin GC (2002) Cocaine enhances human immunodeficiency virus replication in a model of severe combined immunodeficient mice implanted with human peripheral blood leukocytes. J Infect Dis 185:701–705

    Article  PubMed  CAS  Google Scholar 

  • Schilling M, Strecker JK, Ringelstein EB, Kiefer R, Schabitz WR (2009) Turn-over of meningeal and perivascular macrophages in the brain of MCP-1-, CCR-2- or double knockout mice. Exp Neurol 219:583–585

    Article  PubMed  CAS  Google Scholar 

  • Steele AD, Henderson EE, Rogers TJ (2003) Mu-opioid modulation of HIV-1 coreceptor expression and HIV-1 replication. Virology 309:99–107

    Article  PubMed  CAS  Google Scholar 

  • Tyor WR, Power C, Gendelman HE, Markham RB (1993) A model of human immunodeficiency virus encephalitis in scid mice. Proc Natl Acad Sci U S A 90:8658-8662

    Google Scholar 

  • Vigorito M, LaShomb AL, Chang SL (2007) Spatial learning and memory in HIV-1 transgenic rats. J Neuroimmune Pharmacol 2:319–328

    Google Scholar 

  • Webber MP, Schoenbaum EE, Gourevitch MN, Buono D, Klein RS (1999) A prospective study of HIV disease progression in female and male drug users. AIDS 13:257–262

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants MH-068212, DA020392, DA023397 and DA024442 (SB) and DA030285 (HY) from the National Institutes of Health.

Conflicts of Interest

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpa Buch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, H., Buch, S. Rodent Models of HAND and Drug Abuse: Exogenous Administration of Viral Protein(s) and Cocaine. J Neuroimmune Pharmacol 7, 341–351 (2012). https://doi.org/10.1007/s11481-012-9355-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-012-9355-2

Keywords

Navigation