Skip to main content

Advertisement

Log in

Neuroimmune Pharmacology from a Neuroscience Perspective

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

An Erratum to this article was published on 14 September 2010

Abstract

The focus of this commentary is to describe how neuroscience, immunology, and pharmacology intersect and how interdisciplinary research involving these areas has expanded knowledge in the area of neuroscience, in particular. Examples are presented to illustrate that the brain can react to the peripheral immune system and possesses immune function and that resident immune molecules play a role in normal brain physiology. In addition, evidence is presented that the brain immune system plays an important role in mediating neurodegenerative diseases, the aging process, and neurodevelopment and synaptic plasticity. The identification of these mechanisms has been facilitated by pharmacological studies and has opened new possibilities for pharmacotherapeutic approaches to the treatment of brain disorders. The emerging field of neuroimmune pharmacology exemplifies this interdisciplinary approach and has facilitated the study of basic cellular and molecular events and disease states and opens avenues for novel therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer’s diseases. Neurobiol Aging 21:83–421

    Google Scholar 

  • Bauer J, Wekerle H, Lassmann H (1995) Apoptosis in brain specific autoimmune disease. Curr Opin Immunol 7:839–843

    Article  CAS  PubMed  Google Scholar 

  • Boulanger L (2009) Immune proteins in brain development and synaptic plasticity. Neuron 64:93–109

    Article  CAS  PubMed  Google Scholar 

  • Brown GC (2007) Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem Soc Trans 35(5):1119–1121

    Article  CAS  PubMed  Google Scholar 

  • Bruce-Keller AJ, Keeling JL, Keller JN, Huang FF, Camondola S, Mattson MP (1999) Antiinflammatory effects of estrogen on microglial activation. Endocrinology 141(10):3646–3656

    Article  Google Scholar 

  • Burstein S (2005) PPAR-gamma: a nuclear receptor with affinity for cannabinoids. Life Sci 77(14):1674–1684

    Article  CAS  PubMed  Google Scholar 

  • Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M (2006) Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 31:149–160

    Article  CAS  PubMed  Google Scholar 

  • Cabral GA (2006) Drugs of abuse, immune modulation, and AIDS. J Neuroimmune Pharmacol 1:280–295

    Article  PubMed  Google Scholar 

  • Cai Z, Pang Y, Lin S, Rhodes PG (2003) Differential roles of tumor necrosis-alpha and interleukin-1 beta in lipopolysaccharide induced brain injury in the neonatal rat. Brain Res 975:37–47

    Article  CAS  PubMed  Google Scholar 

  • Cederberg D, Siesjö P (2010) What has inflammation to do with traumatic brain injury? Childs Nerv Syst 26:221–226

    Article  PubMed  Google Scholar 

  • Chang RC, Chiu K, Ho Y, Sp K (2009) Modulation of neuroimmune responses on glia in the central nervous system: implication in therapeutic intervention against neuroinflammation. Cell Mol Immunol 6(5):317–326

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Buchanan JB, Sparkman NL, Godbout JP, Feund GG, Johnson RW (2008) Neuroinflammation and disruption in working memory in aged mice after acute stimulation of the peripheral innate immune system. Brain Behav Immun 22:301–311

    Article  CAS  PubMed  Google Scholar 

  • Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O (2005) Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet 14:1709–1725

    Article  CAS  PubMed  Google Scholar 

  • Conant K, St Hillaire C, Anderson C, Galey D, Wang J, Nath A (2004) Human immunodeficiency virus type 1 Tat and methamphetamine affect the release and activation of matrix-degrading proteinases. J Neurovirol 10(1):21–28

    Article  CAS  PubMed  Google Scholar 

  • Daynes RA, Jones DC (2002) Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2(10):748–759

    Article  CAS  PubMed  Google Scholar 

  • Dello Russo C, Boullerne AI, Garvrilyuk V, Feinstein DL (2004) Inhibition of micorglial inflammatory responses by norepinephrine: effects on nitric oxide and interleukin-1β production. J Neuroinflammation 1(1):9

    Article  PubMed  Google Scholar 

  • De Luigi A, Fragiacomo C, Lucca U, Quadri P, Tettamanti M, Grazia De Simoni M (2001) Inflammatory markers in Alzheimer’s disease and multi-infarct dementia. Mech Ageing Dev 122:1985–1995

    Article  PubMed  Google Scholar 

  • Dhawan S, Weeks BS, Soderland C, Schnaper HW, Toro LA, Asthana SP, Hewlett IK, Stetler-Stevenson WG, Yamada SS, Yamada KM, Meltzer MS (1995) HIV-1 infection alters monocyte interactions with human microvascular endothelial cells. J Immunol 154(1):422–432

    CAS  PubMed  Google Scholar 

  • Downer EJ, Cowley TR, Cox F, Maher FO, Berezin V, Bock E, Lynch MA (2009) A synthetic NCAM-derived mimetic peptide, FGL, exerts anti-inflammatory properties via IGF-1 and interferon-gamma modulation. J Neurochem 109:1516–1525

    Article  CAS  PubMed  Google Scholar 

  • Ehrhart J, Obregon D, Mori T, Hou H, Sun N, Bai Y, Klein T, Fernandez F, Tan J, Shytle RD (2005) Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J Neuroinflammation 2:29–42

    Article  PubMed  Google Scholar 

  • Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, Berman JW (2006) CCL2/Monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood–brain barrier: a potential mechanism of HIV–CNS invasion and NeuroAIDS. J Neurosci 26(4):1098–1106

    Article  CAS  PubMed  Google Scholar 

  • Flora G, Lee YW, Nath A, Hennig B, Maragos W, Toborek M (2003) Methamphetamine potentiates HIV-1 Tat protein-mediated activation of redox-sensitive pathways in discrete regions of the brain. Exp Neurol 179(1):60–70

    Article  CAS  PubMed  Google Scholar 

  • Frohman EM, Frohman TC, Vayuvegula B, Gupta S, van den Noort S (1988) Vasoactive intestinal polypeptide inhibits the expression of the MHC class II antigens on astrocytes. J Neurol Sci 88(1–3):339–346

    Article  CAS  PubMed  Google Scholar 

  • Gerhard A, Paves N, Hotton G, Turkheimer F, Es M, Hammers A, Eggert K, Oertel W, Banati RB, Brooks DJ (2006) In vivo imaging of microglial activation with [11C]R-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21:404–412

    Article  CAS  PubMed  Google Scholar 

  • Ghirnikar RS, Lee YL, Eng LF (1998) Inflammation in traumatic brain injury: role of cytokines and chemokines. Neurochem Res 23:329–340

    Article  CAS  PubMed  Google Scholar 

  • Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    Article  CAS  PubMed  Google Scholar 

  • Gold BG, Nutt JG (2002) Neuroimmunophilin ligands in the treatment of Parkinson’s disease. Curr Opin Pharmacol 2:82–86

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves J, Martins T, Ferreira R, Milhazes N, Borges F, Ribeiro CF, Malva JO, Macedo TR, Silva AP (2008) Methamphetamine-induced early increase of IL-6 and TNF-alpha mRNA expression in the mouse brain. Ann NY Acad Sci 1139:103–111

    Article  PubMed  Google Scholar 

  • Gonçalves J, Baptista S, Martins T, Milhazes N, Borges F, Ribeiro CF, Malva JO, Silva AP (2010) Methamphetamine-induced neuroinflammation and neuronal dysfunction in the mice hippocampus: preventive effect of indomethacin. Eur J Neurosci 31(2):315–326

    Article  PubMed  Google Scholar 

  • Gong JP, Onaivi ES, Ishiguro H, Liu QR, Tagliaferro PA, Brusco A, Uhl GR (2006) Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res 1071(1):10–23

    Article  CAS  PubMed  Google Scholar 

  • Halle A, Hornung V, Petzold GC, Stewart GR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DR (2008) The NALP3 infammasome in involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865

    Article  CAS  PubMed  Google Scholar 

  • Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, Rice KC (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci 87(5):1932–1936

    Article  CAS  PubMed  Google Scholar 

  • Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28:254–260

    Article  CAS  PubMed  Google Scholar 

  • Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:383–397

    Article  Google Scholar 

  • Holtmann B, Wiese S, Samsam M, Grohmann K, Pennica D, Martini R, Sendtner M (2005) Triple knock-out of CNTF, LIF, and CT-1 defines cooperative and distinct roles of these neurotrophic factors for motoneuron maintenance and function. J Neurosci 25(7):1778–1787

    Article  CAS  PubMed  Google Scholar 

  • Huh GS, Boulanger LM, Du H, Riquelme PA, Brotz TM, Shatz CJ (2000) Functional requirement for class I MHC in CNS development and plasticity. Science 290(5499):2155–2159

    Article  CAS  PubMed  Google Scholar 

  • Iuvone T, Esposito G, De Filippis D, Scuderi C, Steardo L (2009) Cannabidiol: a promising drug for neurodegenerative disorders? CNS Neursci Ther 15(1):65–75

    Article  CAS  Google Scholar 

  • Ji JF, He BP, Dheen ST, Tay SS (2004) Expressoin of chemokine receptors CSCR4, CCR2, CCR5, and CX3CR1 in neural progenitor cells isolated from the subventricular zone of the adult rat brain. Neuroci Lett 355:236–240

    Article  CAS  Google Scholar 

  • Kadhim HJ, Duchateau J, Sebire G (2008) Cytokines and brain injury: invited review. J Intensive Care Med 23:236–249

    Article  PubMed  Google Scholar 

  • Kim HS, Suh YH (2009) Minocylcine and neurodegenerative disease. Behav Brain Res 196:168–179

    Article  CAS  PubMed  Google Scholar 

  • Kong LY, McMillian MK, Hudson PM, Jin L, Hong JS (1997) Inhibition of lipopolysaccharide-induced nitric oxide and cytokine production by ultralow concentrations of dynorphins in mixed glia cultures. J Pharmacol Exp Ther 280(1):61–66

    CAS  PubMed  Google Scholar 

  • Lassmann H, Bruck W, Lucchinetti C (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 7:115–121

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Collins M, Vanguri P, Shin ML (1992) Glutamate differentially inhibits the expression of class II MHC antigens on astrocytes and microglia. J Immunol 148(11):3391–3397

    CAS  PubMed  Google Scholar 

  • Li X, Stark G (2002) NFκB-dependent signaling pathways. Exp Hematol 30:285–296

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Gao HM, Hong JS (2003) Parkinson’s disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of Neuroinflammation. Environ Health Perspect 111:1065–1073

    Article  CAS  PubMed  Google Scholar 

  • Lu KT, Wang YW, Yang JT, Yang YL, Chen HI (2005) Effect of interleukin-1 on traumatic brain injury-induced damage to hippocampal neurons. J Neurotrauma 22:885–895

    Article  PubMed  Google Scholar 

  • Lucas S-M, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147:S232–S240

    Article  CAS  PubMed  Google Scholar 

  • Lucin KM, Wyss-Coray T (2009) Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64:110–123

    Article  CAS  PubMed  Google Scholar 

  • Lupien SJ, Maheu F, Tu M, Fiocco A, Schramek TE (2007) The effects of stress and stress hormones on human cognition: implications for the field of brain cognition. Brain Cogn 65:209–237

    Article  CAS  PubMed  Google Scholar 

  • Maragos WF, Young KL, Turchan JT, Guseva M, Pauly JR, Nath A, Cass WA (2002) Human immunodeficiency virus-1 Tat protein and methamphetamine interact synergistically to impair striatal dopaminergic function. J Neurochem 83(4):955–963

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291

    CAS  PubMed  Google Scholar 

  • McGuire SO, Ling ZD, Lipton JW, Sortwell CE, Collier TJ, Carvey PM (2001) Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Exp Neurol 169:219–230

    Article  CAS  PubMed  Google Scholar 

  • Myer DJ, Gurkof GG, Lee SM, Hovda DA, Sofroniew MV (2006) Essential protective roles of astrocytes in traumatic brain injury. Brain 129:2761–2772

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu T, Mogi M, Ishinose H, Togari A (2000) Cytokines in Parkinson’s disease. J Neural Transm Suppl 143–151

  • Nagayama T, Sinor AD, Simon RP, Chen J, Graham SH, Jin K, Greenberg DA (1999) Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci 19(8):2987–2995

    CAS  PubMed  Google Scholar 

  • Nakajima A, Yamada K, Nagai T, Uchiyama T, Miyamoto Y, Mamiya T, He J, Nitta A, Mizuno M, Tran MH, Seto A, Yoshimura M, Kitaichi K, Hasegawa T, Saito K, Yamada Y, Seishima M, Sekikawa K, Kim HC, Nabeshima T (2004) Role of tumor necrosis factor-alpha in methamphetamine-induced drug dependence and neurotoxicity. J Neurosci 24(9):2212–2225

    Article  CAS  PubMed  Google Scholar 

  • Neumann H, Misgeld T, Matsumuro K, Wekerle H (1998) Neurotrophins inhibit major histocompatibility class II inducibility of micoglia: involvement of the p75 neurotrophin receptor. Proc Natl Acad Sci USA 95:5779–5784

    Article  CAS  PubMed  Google Scholar 

  • Orio L, O’Shea E, Sanchez V, Pradillo JM, Escobedo I, Camarero J, Moro MA, Green AR, Colado MI (2004) 3, 4-Methylenedioxymethamphetamine increases interleukin-1beta levels and activates microglia in rat brain: studies on the relationship with acute hyperthermia and 5-HT depletion. J Neurochem 89:1445–1453

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan SE (2007) Cannabinoids go nuclear: evidence for activation of peroxisome proliferator-activated receptors. Br J Pharmacol 152(5):576–582

    Article  PubMed  Google Scholar 

  • Perry VH, Andersson PB, Gordon S (1993) Macrophages and inflammation in the central nervous system. Trends Neurosci 16:268–273

    Article  CAS  PubMed  Google Scholar 

  • Pournajafi Nazarloo H, Takao T, Taguchi T, Ito H, Hashimoto K (2003) Modulation of type I IL-1 receptor and IL-1 beta mRNA expression followed by endotoxins treatment in the corticotrophin-releasing hormone-deficient mouse. J Neuroimmunol 1401:102–108

    Article  Google Scholar 

  • Ramírez BG, Blázquez C, Gómez del Pulgar T, Guzmán M, de Ceballos ML (2005) Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 25(8):1904–1913

    Article  PubMed  Google Scholar 

  • Reiner BC, Keblesh JP, Xiong H (2009) Methamphetamine abuse, HIV infection, and neurotoxicity. Int J Physiol Pathophysiol Pharmacol 1(2):162–179

    CAS  PubMed  Google Scholar 

  • Rothwell NJ, Luheshi GN (2000) Interleukin-1 in the brain: biology, pathology, and therapeutic target. Trends Neurosci 23:618–625

    Article  CAS  PubMed  Google Scholar 

  • Roumier A, Béchade C, Poncer JC, Smalla KH, Tomasello E, Vivier E, Gundelfinger ED, Triller A, Bessis A (2004) Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J Neurosci 24(50):11421–11428

    Article  CAS  PubMed  Google Scholar 

  • Roussa E, Wiehle M, Dünker N, Becker-Katins S, Oehlke O, Krieglstein K (2006) Transforming growth factor beta is required for differentiation of mouse mesencephalic progenitors into dopaminergic neurons in vitro and in vivo: ectopic induction in dorsal mesencephalon. Stem Cells 24(9):2120–2129

    Article  CAS  PubMed  Google Scholar 

  • Sastre M, Walter J, Gentleman SM (2008) Interactions between APP secretases and inflammatory mediators. J Neuroinflammation 5:25–35

    Article  PubMed  Google Scholar 

  • Shohami E, Ginis I, Hallenbeck JM (1999) Dual role of tumor necrosis alpha in brain injury. Cytokine Growth Factor Rev 10:119–130

    Article  CAS  PubMed  Google Scholar 

  • Stellwagen D, Beattie EC, Seo JY, Malenka RC (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 25(12):3219–3228

    Article  CAS  PubMed  Google Scholar 

  • Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178

    Article  CAS  PubMed  Google Scholar 

  • Streit WJ, Miller KR, Loeps KO, Njie E (2008) Microglial degeneration in the aging brain-bad news for neurons? Front Biosci 13:3424–3438

    Google Scholar 

  • Stumm R, Zhou C, Ara T, Lazarini F, Dubois-Dalcq M, Nagasawa T, Höllt V, Schulz S (2003) CXCR4 regulates interneuron migration in the developing neocortex. J Neurosci 23(12):5123–5130

    CAS  PubMed  Google Scholar 

  • Sun Y, Alexander SPH, Garle MJ, Gibson CL, Hewitt K, Murphy SP, Kendall DA, Bennett AJ (2007) Cannabinoid activation of PPARα; a novel neuroprotective mechanism. Br J Pharmacol 152(5):734–743

    Article  CAS  PubMed  Google Scholar 

  • Tchelingerian JL, Vignais L, Jacque C (1994) TNF alpha gene expression is induced in neurons after a hippocampal lesion. NeuroReport 5:585–588

    Article  CAS  PubMed  Google Scholar 

  • Tehranian R, Andell-Jonsson S, Beni SM, Yatsiv I, Shohami E, Bartfai T, Lundkvist J, Iverfeldt K (2002) Improved recovery and delayed cytokine induction after closed head injury in mice with central overexpression of the secreted isoform of the interleukin-1 receptor antagonist. J Neurotrauma 19:939–951

    Article  PubMed  Google Scholar 

  • Thomas DM, Dowgiert J, Geddes TJ, Francescutti-Verbeem D, Liu X, Kuhn DM (2004) Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines. Neurosci Lett 367(3):349–354

    Article  CAS  PubMed  Google Scholar 

  • Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N, Walter J, Schulz-Schuffer W, Fassbender K (2007) Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem 20:947–956

    Article  CAS  PubMed  Google Scholar 

  • Weaver JD, Huang MH, Albert M, Harris T, Rowe JW, Seeman TE (2002) Interleukin-6 and risk of cognitive decline: MacArthur studies of successful aging. Neurology 59(3):371–378

    CAS  PubMed  Google Scholar 

  • Whitney NP, Eidem TM, Peng H, Huang Y, Zheng JC (2009) Inflammation mediates varying effects in neurogenesis: relevance to the pathogenesis of brain injury and neurodegenerative disorders. J Neurochem 108(6):1343–1359

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Hopf C, Reddy R, Cho RW, Guo L, Lanahan A, Petralia RS, Wenthold RJ, O’Brien RJ, Worley P (2003) Narp and NP1 form heterocomplexes that function in developmental and activity-dependent synaptic plasticity. Neuron 39(3):513–528

    Article  CAS  PubMed  Google Scholar 

  • Yan SD, Chen X, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern DM, Schmidt A-M (1996) RAGE and Abeta peptide neurotoxicity in Alzheimer’s disease. Nature 382:685–691

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Shirayama Y, Shimizu E, Iyo M, Hashimoto K (2006) Protective effects of minocycline on 3, 4-methylenedioxymethamphetamine-induced neurotoxicity in serotonergic and dopaminergic neurons of mouse brain. Eur J Pharmacol 544(1–3):1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Disclaimers

Neither author has any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan K. Yamamoto.

Additional information

Sources of Support

DA07606, DA16866, and DA19486

An erratum to this article can be found at http://dx.doi.org/10.1007/s11481-010-9244-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Northrup, N.A., Yamamoto, B.K. Neuroimmune Pharmacology from a Neuroscience Perspective. J Neuroimmune Pharmacol 6, 10–19 (2011). https://doi.org/10.1007/s11481-010-9239-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-010-9239-2

Keywords

Navigation