Skip to main content
Log in

Design and Simulation of a Resonance-Based Plasmonic Sensor for Mass Density Sensing of Methane and Carbon Dioxide Gases

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a method for sensing the mass densities of \({\mathrm{CO}}_{2}\) and \({\mathrm{CH}}_{4}\) gases is proposed based on the theoretical index–density relation of Lorentz–Lorenz using a resonance-based plasmonic refractive index sensor. Metal–insulator–metal (MIM) plasmonic bus waveguide, known for its very high mode confinement, is utilized for the propagation of plasmonic mode between input and output. An edge-coupled disk resonator and two of its modifications are investigated to find the desired operational parameters like refractive index sensitivity and free spectral range (FSR) of resonances. The introduced mechanism translates any deviation in the resonance wavelength of the sensor to specified variations in the mass density of test gases. The achieved mass density sensitivities are \(118\;\mathrm{ nm}/\left(\mathrm{gr}/{\mathrm{cm}}^{3}\right)\) at the range of \(0-0.21\;\mathrm{ gr}/{\mathrm{cm}}^{3}\) for \({\mathrm{CO}}_{2}\) gas, and \(319.8\;\mathrm{ nm}/\left(\mathrm{gr}/{\mathrm{cm}}^{3}\right)\) at the range of \(0-0.08\;\mathrm{ gr}/{\mathrm{cm}}^{3}\) for \({\mathrm{CH}}_{4}\) gas. Also, in a 2D modal analysis, the achieved waveguide sensitivities in a MIM waveguide, whose insulator is treated as a functional material for the concentration of \({\mathrm{CO}}_{2}\) gas, in the two cases of applying or ignoring the refractive index of gas in simulations are compared. Hence, a rigorous method in 3D simulations for achieving gas sensitivities based on Lorentz–Lorenz formula is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data supporting this study’s findings are available from the corresponding author upon request.

Code Availability

The simulation code supporting this study’s findings is available from the corresponding author upon request.

References

  1. Lacis AA, Schmidt GA, Rind D, Ruedy RA (2010) Atmospheric CO2: principal control knob governing Earth’s temperature. Science 330:356–359

    Article  CAS  Google Scholar 

  2. Khonina S, Kazanskiy N, Butt M, Kaźmierczak A, Piramidowicz R (2021) Plasmonic sensor based on metal-insulator-metal waveguide square ring cavity filled with functional material for the detection of CO 2 gas. Opt Express 29:16584–16594

    Article  CAS  Google Scholar 

  3. Khonina SN, Kazanskiy NL, Butt MA (2020) Evanescent field ratio enhancement of a modified ridge waveguide structure for methane gas sensing application. IEEE Sens J 20:8469–8476

    Article  CAS  Google Scholar 

  4. Kazanskiy NL, Butt MA, Khonina SN (2021) Carbon dioxide gas sensor based on polyhexamethylene biguanide polymer deposited on silicon nano-cylinders metasurface. Sensors 21:378

    Article  CAS  Google Scholar 

  5. Badri SH (2021) Transmission resonances in silicon subwavelength grating slot waveguide with functional host material for sensing applications. Opt Laser Technol 136:106776

    Article  CAS  Google Scholar 

  6. Mishra SK, Tripathi SN, Choudhary V, Gupta BD (2015) Surface plasmon resonance-based fiber optic methane gas sensor utilizing graphene-carbon nanotubes-poly (methyl methacrylate) hybrid nanocomposite. Plasmonics 10:1147–1157

    Article  CAS  Google Scholar 

  7. Zheludev NI, Kivshar YS (2012) From metamaterials to metadevices. Nat Mater 11:917–924 

  8. Rakhshani MR (2020) Tunable and sensitive refractive index sensors by plasmonic absorbers with circular arrays of nanorods and nanotubes for detecting cancerous cells. Plasmonics 15:2071–2080

    Article  CAS  Google Scholar 

  9. Cheng Y, Li Z, Cheng Z (2021) Terahertz perfect absorber based on InSb metasurface for both temperature and refractive index sensing. Opt Mater 117:111129

    Article  CAS  Google Scholar 

  10. Patel SK, Surve J, Katkar V, Parmar J, Al-Zahrani FA, Ahmed K, Bui FM (2022) Encoding and tuning of THz metasurface-based refractive index sensor with behavior prediction using XGBoost regressor. IEEE Access 10:24797–24814

    Article  Google Scholar 

  11. Liu G-D, Zhai X, Wang L-L, Lin Q, Xia S-X, Luo X, Zhao C-J (2018) A high-performance refractive index sensor based on Fano resonance in Si split-ring metasurface. Plasmonics 13:15–19

    Article  CAS  Google Scholar 

  12. Alipour A, Farmani A, Mir A (2020) SiO2–silver metasurface architectures for ultrasensitive and tunable plasmonic biosensing. Plasmonics 15:1935–1942

    Article  CAS  Google Scholar 

  13. Lu X, Zheng G, Zhou P (2019) High performance refractive index sensor with stacked two-layer resonant waveguide gratings. Results in Physics 12:759–765

    Article  Google Scholar 

  14. Zhang Z, Yang J, He X, Zhang J, Huang J, Chen D, Han Y (2018) Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors 18:116

    Article  Google Scholar 

  15. Wang M, Zhang M, Wang Y, Zhao R, Yan S (2019) Fano resonance in an asymmetric MIM waveguide structure and its application in a refractive index nanosensor. Sensors 19:791

    Article  Google Scholar 

  16. Rahmatiyar M, Afsahi M, Danaie M (2020) Design of a refractive index plasmonic sensor based on a ring resonator coupled to a MIM waveguide containing tapered defects. Plasmonics 15:2169–2176

    Article  CAS  Google Scholar 

  17. Luo S, Li B, Xiong D, Zuo D, Wang X (2017) A high performance plasmonic sensor based on metal-insulator-metal waveguide coupled with a double-cavity structure. Plasmonics 12:223–227

    Article  CAS  Google Scholar 

  18. Zafar R, Salim M (2015) Enhanced figure of merit in Fano resonance-based plasmonic refractive index sensor. IEEE Sens J 15:6313–6317

    Article  CAS  Google Scholar 

  19. Wu C, Ding H, Huang T, Wu X, Chen B, Ren K, Fu S (2018) Plasmon-induced transparency and refractive index sensing in side-coupled stub-hexagon resonators. Plasmonics 13:251–257

    Article  CAS  Google Scholar 

  20. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830 

  21. Maier SA (2007) Plasmonics: fundamentals and applications, Springer 

  22. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193 

  23. Gierak J, Madouri A, Biance A, Bourhis E, Patriarche G, Ulysse C, Lucot D, Lafosse X, Auvray L, Bruchhaus L (2007) Sub-5 nm FIB direct patterning of nanodevices. Microelectron Eng 84:779–783

  24. Wang X, Guan X, Huang Q, Zheng J, Shi Y, Dai D (2013) Suspended ultra-small disk resonator on silicon for optical sensing. Opt Lett 38:5405–5408

  25. Martín-Sánchez C, González-Rubio G, Mulvaney P, Guerrero-Martínez A, Liz-MarzáN LM, Rodríguez F (2019) Monodisperse gold nanorods for high-pressure refractive index sensing. J Phys Chem Lett 10:1587–1593

  26. Waxler RM, Cleek G (1973) “The effect of temperature and pressure on the refractive index of some oxide glasses”, Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry 77:755

    CAS  Google Scholar 

  27. Soge AO, Dairo OF, Sanyaolu ME, Kareem SO (2021) Recent developments in polymer optical fiber strain sensors: a short review. J Opt 50:299–313

    Article  Google Scholar 

  28. Wu T, Liu Y, Yu Z, Ye H, Peng Y, Shu C, Yang C, Zhang W, He H (2015) A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity. Optics Communications 339:1–6

    Article  Google Scholar 

  29. Kong Y, Qiu P, Wei Q, Quan W, Wang S, Qian W (2016) Refractive index and temperature nanosensor with plasmonic waveguide system. Optics Communications 371:132–137

    Article  CAS  Google Scholar 

  30. Laxmeshwar LS, Jadhav MS, Akki JF, Raikar P, Kumar J, Raikar U (2017) Highly sensitive fiber grating chemical sensors: an effective alternative to atomic absorption spectroscopy. Opt Laser Technol 91:27–31

    Article  CAS  Google Scholar 

  31. Budinski V, Donlagic D (2021) All silica micro-fluidic flow injection sensor system for colorimetric chemical sensing. Sensors 21:4082

    Article  CAS  Google Scholar 

  32. Liu Y, Daum PH (2008) Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols. J Aerosol Sci 39:974–986

    Article  CAS  Google Scholar 

  33. Buldakov M, Matrosov I, Cherepanov V (2000) Temperature dependence of polarizability of diatomic homonuclear molecules. Opt Spectrosc 89:37–41

  34. Lorentz HA (1880) Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte. Ann Phys 245:641–665

    Article  Google Scholar 

  35. Oughstun KE, Cartwright NA (2003) On the Lorentz-Lorenz formula and the Lorentz model of dielectric dispersion. Opt Express 11:1541–1546

  36. Moeinimaleki B, Kaatuzian H, Livani A-M (2022) Design and simulation of a plasmonic density nanosensor for polarizable gases. Appl Opt 61:4735–4742

    Article  CAS  Google Scholar 

  37. Kerl K, Hohm U, Varchmin H (1992) Polarizability α (ω, T, ρ) of small molecules in the gas phase. Ber Bunsenges Phys Chem 96:728–733

    Article  CAS  Google Scholar 

  38. Hohm U, Kerl K (1990) Interferometric measurements of the dipole polarizability α of molecules between 300 K and 1100 K: I. Monochromatic measurements at λ= 632· 99 nm for the noble gases and H2, N2, O2, and CH4. Mol Phys 69:803–817

    Article  CAS  Google Scholar 

  39. Buckingham AD, Graham C (1974) The density dependence of the refractivity of gases. Proc R Soc 337:275–291

  40. Kerl K (1982) Determination of mean molecular polarizabilities and second virial coefficients of gases by scanning-wavelength interferometry. Z Phys Chem 129:129–148

    Article  CAS  Google Scholar 

  41. Burns R, Graham C, Weller A (1986) Direct measurement and calculation of the second refractivity virial coefficients of gases. Mol Phys 59:41–64

    Article  CAS  Google Scholar 

  42. Hohm U, Kerl K (1990) Interferometric measurement of the dipole polarizability of molecules between 300 K and 1100 K. Monochromatic measurements at l ¼ 632.99 nm for the noble gases and H2, N2, O2, and CH4. Mol Phys 69:819–831

    Article  CAS  Google Scholar 

  43. Bridge N-J, Buckingham AD (1966) The polarization of laser light scattered by gases. Proc R Soc Lond A Math Phys Sci 295:334–349

  44. Bridge N (1964) Bucking ham ADJ Chem. Phys 40:2733

    CAS  Google Scholar 

  45. Bishop DM, Cheung LM (1980) Dynamic dipole polarizability of H2 and HeH+. J Chem Phys 72:5125–5132

    Article  CAS  Google Scholar 

  46. Diller DE (1968) Refractive index of gaseous and liquid hydrogen. J Chem Phys 49:3096–3105

    Article  CAS  Google Scholar 

  47. Achtermann HJ, Hong J, Wagner W, Pruss A (1992) Refractive index and density isotherms for methane from 273 to 373 K and at pressures up to 34 MPa. J Chem Eng Data 37:414–418

    Article  CAS  Google Scholar 

  48. Kazanskiy N, Khonina S, Butt M (2020) Plasmonic sensors based on metal-insulator-metal waveguides for refractive index sensing applications: a brief review. Physica E 117:113798

    Article  CAS  Google Scholar 

  49. Dionne J, Sweatlock L, Atwater H, Polman A (2006) Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys Rev B73:035407

    Article  Google Scholar 

  50. Ou X, Yang Y, Sun F, Zhang P, Tang B, Li B, Liu R, Liu D, Li Z (2021) Wide-range, ultra-compact, and high-sensitivity ring resonator biochemical sensor with CMOS-compatible hybrid plasmonic waveguide. Opt Express 29:19058–19067

    Article  CAS  Google Scholar 

  51. Shahamat Y, Ghaffarinejad A, Vahedi M (2020) Plasmon induced transparency and refractive index sensing in two nanocavities and double nanodisk resonators. Optik 202:163618

    Article  CAS  Google Scholar 

  52. Zhang Z, Yang J, Han Y, He X, Huang J, Chen D (2021) Hybridization-induced resonances with high-quality factor in a plasmonic chipscale ring-disk nanocavity. Waves in Random and Complex Media 31:2327–2336

    Article  Google Scholar 

  53. Butt M, Khonina S, Kazanskiy N (2021) Metal-insulator-metal nano square ring resonator for gas sensing applications. Waves Random Complex Media 31:146–156

  54. Danaie M, Shahzadi A (2019) Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator. Plasmonics 14:1453–1465

    Article  CAS  Google Scholar 

  55. Yan S-B, Luo L, Xue C-Y, Zhang Z-D (2015) A refractive index sensor based on a metal-insulator-metal waveguide-coupled ring resonator. Sensors 15:29183–29191

    Article  CAS  Google Scholar 

  56. Zhang Q, Huang X-G, Lin X-S, Tao J, Jin X-P (2009) A subwavelength coupler-type MIM optical filter. Opt Express 17:7549–7554

  57. Johnson PB, Christy R-W (1972) Optical constants of the noble metals. Phys Rev B6:4370

    Article  Google Scholar 

  58. Marechal N, Quesnel EA, Pauleau Y (1994) Silver thin films deposited by magnetron sputtering. Thin solid films 241:34–38

  59. Gao L, Gstoettner J, Emling R, Wang P, Hansch W, Schmitt-Landsiedel D (2004) Silver patterning by reactive ion beam etching for microelectronics application. MRS Online Proceedings Library (OPL) 812

  60. Pfister G (1983) Detection of smoke gases by solid state sensors—a focus on research activities. Fire Saf J 6:165–174

  61. Pijolat C, Pupier C, Sauvan M, Tournier G, Lalauze R (1999) Gas detection for automotive pollution control. Sens Actuators, B Chem 59:195–202

    Article  CAS  Google Scholar 

  62. Liu J, Luo T, Meng F, Qian K, Wan Y, Liu J (2010) Porous hierarchical In2O3 micro-/nanostructures: preparation, formation mechanism, and their application in gas sensors for noxious volatile organic compound detection. The Journal of Physical Chemistry C 114:4887–4894

    Article  CAS  Google Scholar 

  63. Matsuura S (1993) New developments and applications of gas sensors in Japan. Sens Actuators, B Chem 13:7–11

    Article  CAS  Google Scholar 

  64. Kerl K, Jescheck M (1982) Equipment for precise measurements of the complex refractive index of gases as a function of wavenumber, temperature and pressure. J Phys E: Sci Instrum 15:955

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

BM came up with the manuscript’s core ideas, performed software simulations and validation of results, and wrote the original draft. HK performed the manuscript’s technical–review and editing, supervision, and project administration. AML performed the manuscript’s writing and structural–review and editing, supervision, and project administration.

Corresponding authors

Correspondence to Babak Moeinimaleki or Hassan Kaatuzian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval

The authors declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere. Also, results are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Consent to Participate

Informed consent was obtained from all authors.

Consent for Publication

The authors confirm that there is informed consent to the publication of the data contained in the manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moeinimaleki, B., Kaatuzian, H. & Mallah Livani, A. Design and Simulation of a Resonance-Based Plasmonic Sensor for Mass Density Sensing of Methane and Carbon Dioxide Gases. Plasmonics 18, 225–240 (2023). https://doi.org/10.1007/s11468-022-01753-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01753-1

Keywords

Navigation