Skip to main content

Advertisement

Log in

Plasmon-Driven Photothermal Conversion with Two-Dimensional Ultra-thin PdFe Nanosheets for Ethylene Glycol Electrooxidation

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Pd-based nanostructures have high catalytic activity and good light trapping ability for photothermal catalysis. In this work, PdFe nanosheets (NSs) were synthesized through a hydrothermal method and efficiently catalyzed ethylene glycol electrooxidation reaction (EGOR). Under the irradiation of light, the mass activity of EGOR enhanced 1.78 times (from 4.02 to 7.17 A mg−1) comparing with no light, which was 18 times higher than commercial Pd/C. The high activity is attributed to the combination of high photothermal conversion efficiency and the exposure of high energy facet (111) of PdFe NSs. The effects of Pd/Fe ratio, light intensity, and wavelength were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

There is no availability of data.

References

  1. Zhu CZ, Guo SJ, Dong SJ (2012) PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules. Adv Mater 24(17):2326–2331. https://doi.org/10.1002/adma.201104951

    Article  CAS  PubMed  Google Scholar 

  2. Wang AL, Xu H, Feng JX, Ding LX, Tong YX, Li GR (2013) Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effects and synergistic effects for ethanol electrooxidation. J Am Chem Soc 135(29):10703–10709. https://doi.org/10.1021/ja403101r

    Article  CAS  PubMed  Google Scholar 

  3. Hong W, Shang CS, Wang J, Wang EK (2015) Bimetallic PdPt nanowire networks with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation. Energy Environ Sci 8(10):2910–2915. https://doi.org/10.1039/c5ee01988e

    Article  CAS  Google Scholar 

  4. Xin L, Zhang ZY, Qi J, Chadderdon D, Li WZ (2012) Electrocatalytic oxidation of ethylene glycol (EG) on supported Pt and Au catalysts in alkaline media: reaction pathway investigation in three-electrode cell and fuel cell reactors. Appl Catal B 125:85–94. https://doi.org/10.1016/j.apcatb.2012.05.024

    Article  CAS  Google Scholar 

  5. Kannan R, Kim AR, Nahm KS, Lee HK, Yoo DJ (2014) Synchronized synthesis of Pd@C-RGO carbocatalyst for improved anode and cathode performance for direct ethylene glycol fuel cell. Chem Commun 50(93):14623–14626. https://doi.org/10.1039/c4cc06879c

    Article  CAS  Google Scholar 

  6. Yue HR, Zhao YJ, Ma XB, Gong JL (2012) Ethylene glycol: properties, synthesis, and applications. Chem Soc Rev 41(11):4218–4244. https://doi.org/10.1039/c2cs15359a

    Article  CAS  PubMed  Google Scholar 

  7. Ketchie W, Fang Y, Wong M, Murayama M, Davis R (2007) Influence of gold particle size on the aqueous-phase oxidation of carbon monoxide and glycerol. J Catal 250(1):94–101. https://doi.org/10.1016/j.jcat.2007.06.001

    Article  CAS  Google Scholar 

  8. Gao F, Xu H, Zhang YP, Wang J, Wang CQ, Du YK (2018) Facile construction of pompon-like PtAg alloy catalysts for enhanced ethylene glycol electrooxidation. Int J Hydrogen Energy 43(20):9644–9651. https://doi.org/10.1016/j.ijhydene.2018.04.005

    Article  CAS  Google Scholar 

  9. Lai JP, Lin F, Tang YH, Zhou P, Chao YG, Zhang YL, Guo SJ (2019) Efficient bifunctional polyalcohol oxidation and oxygen reduction electrocatalysts enabled by ultrathin PtPdM (M = Ni, Fe, Co) nanosheets. Adv Energy Mater 9(8). https://doi.org/10.1002/aenm.201800684

  10. Sui N, Wang K, Bai Q, Wang LN, Wang T, Xiao HL, Liu MH, Colvin VL, Zhang QB, Yu WW (2018) Tuning Pt-Cu nanostructures by bromide ions and their superior electrocatalytic activities for methanol oxidation reaction. J Nanoparticle Res 20(11). https://doi.org/10.1007/s11051-018-4417-x

  11. Sui N, Wang K, Shan XY, Bai Q, Wang LN, Xiao HL, Liu MH, Colvin VL, Yu WW (2017) Facile synthesis of hollow dendritic Ag/Pt alloy nanoparticles for enhanced methanol oxidation efficiency. Dalton Trans 46(44):15541–15548. https://doi.org/10.1039/c7dt03671j

    Article  CAS  PubMed  Google Scholar 

  12. Liu Q, Xu YR, Wang AJ, Feng JJ (2016) Simple wet-chemical synthesis of core-shell Au-Pd@Pd nanocrystals and their improved electrocatalytic activity for ethylene glycol oxidation reaction. Int J Hydrogen Energy 41(4):2547–2553. https://doi.org/10.1016/j.ijhydene.2015.11.143

    Article  CAS  Google Scholar 

  13. Li SP, Lai JP, Luque R, Xu GB (2016) Designed multimetallic Pd nanosponges with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation. Energy Environ Sci 9(10):3097–3102. https://doi.org/10.1039/c6ee02229d

    Article  CAS  Google Scholar 

  14. Lv JJ, Mei LP, Weng XX, Wang AJ, Chen LL, Liu XF, Feng JJ (2015) Facile synthesis of three-dimensional Pt-Pd alloyed multipods with enhanced electrocatalytic activity and stability for ethylene glycol oxidation. Nanoscale 7(13):5699–5705. https://doi.org/10.1039/c5nr00174a

    Article  CAS  PubMed  Google Scholar 

  15. Xu CX, Hao Q, Duan HM (2014) Nanoporous PdPt alloy as a highly active electrocatalyst for formic acid oxidation. J Mat Chem A 2(23):8875–8880. https://doi.org/10.1039/c4ta01532k

    Article  CAS  Google Scholar 

  16. Sui N, Yue RP, Wang YK, Bai Q, An RH, Xiao HL, Wang LN, Liu MH, Yu WW (2019) Boosting methanol oxidation reaction with Au@AgPt yolk-shell nanoparticles. J Alloy Compd 790:792–798. https://doi.org/10.1016/j.jallcom.2019.03.196

    Article  CAS  Google Scholar 

  17. Carvalho LL, Colmati F, Tanaka AA (2017) Nickel-palladium electrocatalysts for methanol, ethanol, and glycerol oxidation reactions. Int J Hydrogen Energy 42(25):16118–16126. https://doi.org/10.1016/j.ijhydene.2017.05.124

    Article  CAS  Google Scholar 

  18. Xu H, Yan B, Zhang K, Wang J, Li SM, Wang CQ, Du YK, Yang P (2018) Sub-5nm monodispersed PdCu nanosphere with enhanced catalytic activity towards ethylene glycol electrooxidation. Electrochim Acta 261:521–529. https://doi.org/10.1016/j.electacta.2018.01.004

    Article  CAS  Google Scholar 

  19. Li DN, He YM, Feng JJ, Zhang QL, Zhang L, Wu L, Wang AJ (2018) Facile synthesis of prickly platinum-palladium core-shell nanocrystals and their boosted electrocatalytic activity towards polyhydric alcohols oxidation and hydrogen evolution. J Colloid Interface Sci 516:476–483. https://doi.org/10.1016/j.jcis.2018.01.060

    Article  CAS  PubMed  Google Scholar 

  20. Zhou YW, Du CY, Han GK, Gao YZ, Yin GP (2016) Ultra-low Pt decorated PdFe alloy nanoparticles for formic acid electro-oxidation. Electrochim Acta 217:203–209. https://doi.org/10.1016/j.electacta.2016.09.070

    Article  CAS  Google Scholar 

  21. Zhang ZY, More KL, Sun K, Wu ZL, Li WZ (2011) Preparation and characterization of PdFe nanoleaves as electrocatalysts for oxygen reduction reaction. Chem Mater 23(6):1570–1577. https://doi.org/10.1021/cm1034134

    Article  CAS  Google Scholar 

  22. Dimos MM, Blanchard GJ (2010) Evaluating the role of Pt and Pd catalyst morphology on electrocatalytic methanol and ethanol oxidation. J Phys Chem C 114(13):6019–6026. https://doi.org/10.1021/jp911076b

    Article  CAS  Google Scholar 

  23. Sui N, Li S, Wang YK, Zhang QB, Liu SF, Bai Q, Xiao HL, Liu MH, Wang LN, Yu WW (2019) Etched PtCu nanowires as a peroxidase mimic for colorimetric determination of hydrogen peroxide. Microchim Acta 186(3). https://doi.org/10.1007/s00604-019-3293-0

  24. Chen AC, Ostrom C (2015) Palladium-based nanomaterials: synthesis and electrochemical applications. Chem Rev 115(21):11999–12044. https://doi.org/10.1021/acs.chemrev.5b00324

    Article  CAS  PubMed  Google Scholar 

  25. Zhang ZY, Li MJ, Wu ZL, Li WZ (2011) Ultra-thin PtFe-nanowires as durable electrocatalysts for fuel cells. Nanotechnology 22(1). https://doi.org/10.1088/0957-4484/22/1/015602

  26. Li WZ, Haldar P (2009) Supportless PdFe nanorods as highly active electrocatalyst for proton exchange membrane fuel cell. Electrochem Commun 11(6):1195–1198. https://doi.org/10.1016/j.elecom.2009.03.046

    Article  CAS  Google Scholar 

  27. Cai Z, Kuang Y, Qi XH, Wang P, Zhang Y, Zhang ZC, Sun XM (2015) Ultrathin branched PtFe and PtRuFe nanodendrites with enhanced electrocatalytic activity. J Mater Chem A 3(3):1182–1187. https://doi.org/10.1039/c4ta04698f

    Article  CAS  Google Scholar 

  28. Zhang K, Xu H, Yan B, Wang J, Du YK, Liu QY (2018) Superior ethylene glycol oxidation electrocatalysis enabled by hollow PdNi nanospheres. Electrochim Acta 268:383–391. https://doi.org/10.1016/j.electacta.2018.02.123

    Article  CAS  Google Scholar 

  29. Fan JC, Yu SS, Qi K, Liu C, Zhang L, Zhang HY, Cui XQ, Zheng WT (2018) Synthesis of ultrathin wrinkle-free PdCu alloy nanosheets for modulating d-band electrons for efficient methanol oxidation. J Mater Chem A 6(18):8531–8536. https://doi.org/10.1039/c8ta01912f

    Article  CAS  Google Scholar 

  30. Huang XQ, Tang SH, Mu XL, Dai Y, Chen GX, Zhou ZY, Ruan FX, Yang ZL, Zheng NF (2011) Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat Nanotechnol 6(1):28–32. https://doi.org/10.1038/nnano.2010.235

    Article  CAS  Google Scholar 

  31. Hu CY, Mu XL, Fan JM, Ma HB, Zhao XJ, Chen GX, Zhou ZY, Zheng NF (2016) Interfacial effects in PdAg bimetallic nanosheets for selective dehydrogenation of formic acid. Chemnanomat 2(1):28–32. https://doi.org/10.1002/cnma.201500162

    Article  CAS  Google Scholar 

  32. Xu H, Yan B, Zhang K, Wang CQ, Zhong JT, Li SM, Yang P, Du YK (2017) Facile synthesis of Pd-Ru-P ternary nanoparticle networks with enhanced electrocatalytic performance for methanol oxidation. Int J Hydrogen Energy 42(16):11229–11238. https://doi.org/10.1016/j.ijhydene.2017.03.023

    Article  CAS  Google Scholar 

  33. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10(12):911–921. https://doi.org/10.1038/nmat3151

    Article  CAS  PubMed  Google Scholar 

  34. Shi Y, Wang J, Wang C, Zhai TT, Bao WJ, Xu JJ, Xia XH, Chen HY (2015) Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J Am Chem Soc 137(23):7365–7370. https://doi.org/10.1021/jacs.5b01732

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Cain JD, Hanson ED, Murthy AA, Hao SQ, Shi FY, Li QQ, Wolverton C, Chen XQ, Dravid VP (2016) Au@MoS2 core-shell heterostructures with strong light-matter interactions. Nano Lett 16(12):7696–7702. https://doi.org/10.1021/acs.nanolett.6b03764

    Article  CAS  PubMed  Google Scholar 

  36. Liu GG, Li P, Zhao GX, Wang X, Kong JT, Liu HM, Zhang HB, Chang K, Meng XG, Kako T, Ye JH (2016) Promoting active species generation by plasmon-induced hot-electron excitation for efficient electrocatalytic oxygen evolution. J Am Chem Soc 138(29):9128–9136. https://doi.org/10.1021/jacs.6b05190

    Article  CAS  PubMed  Google Scholar 

  37. Han XL, Yu YF, Huang Y, Liu DL, Zhang B (2017) Photogenerated carriers boost water splitting activity over transition-metal/semiconducting metal oxide bifunctional electrocatalysts. Acs Catal 7(10):6464–6470. https://doi.org/10.1021/acscatal.7b01823

    Article  CAS  Google Scholar 

  38. Sui N, Gao H, Zhu J, Jiang H, Bai Q, Xiao H, Liu M, Wang L, Yu WW (2019) Shape- and size-dependences of gold nanostructures on the electrooxidation of methanol under visible light irradiation. Nanoscale 11(39):18320–18328. https://doi.org/10.1039/c9nr06839b

    Article  CAS  PubMed  Google Scholar 

  39. Li QY, Wang F, Sun LQ, Jiang Z, Ye TT, Chen M, Bai Q, Wang C, Han XG (2017) Design and synthesis of Cu@CuS yolk-shell structures with enhanced photocatalytic activity. Nano-Micro Lett 9(3). https://doi.org/10.1007/s40820-017-0135-7

  40. Sarhid I, Abdellah I, Martini C, Hu V, Dragoe D, Beaunier P, Lampre I, Remita H (2019) Plasmonic catalysis for the Suzuki-Miyaura cross-coupling reaction using palladium nanoflowers. New J Chem 43(11):4349–4355. https://doi.org/10.1039/c8nj06370b

    Article  CAS  Google Scholar 

  41. Zhao XJ, Dai L, Qin Q, Pei F, Hu CY, Zheng NF (2017) Self-supported D-3 PdCu alloy nanosheets as a bifunctional catalyst for electrochemical reforming of ethanol. Small 13(12). https://doi.org/10.1002/smll.201602970

  42. Ma YR, Li TF, Chen H, Chen XJ, Deng SH, Xu L, Sun DM, Tang YW (2017) A general strategy to the synthesis of carbon-supported PdM (M = Co, Fe and Ni) nanodendrites as high-performance electrocatalysts for formic acid oxidation. J Energy Chem 26(6):1238–1244. https://doi.org/10.1016/j.jechem.2017.10.024

    Article  Google Scholar 

  43. Kibis LS, Titkov AI, Stadnichenko AI, Koscheev SV, Boronin AI (2009) X-ray photoelectron spectroscopy study of Pd oxidation by RF discharge in oxygen. Appl Surf Sci 255(22):9248–9254. https://doi.org/10.1016/j.apsusc.2009.07.011

    Article  CAS  Google Scholar 

  44. YamashitaHayes TP (2009) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials (vol 254, pg 2441, 2008). Appl Surf Sci 255(18):8194–8194. https://doi.org/10.1016/j.apsusc.2009.04.153

    Article  CAS  Google Scholar 

  45. Hong JW, Kim Y, Wi DH, Lee S, Lee SU, Lee YW, Choi SI, Han SW (2016) Ultrathin free-standing ternary-alloy nanosheets. Angewandte Chemie-International Edition 55(8):2753–2758. https://doi.org/10.1002/anie.201510460

    Article  CAS  PubMed  Google Scholar 

  46. Liang X, Liu B, Zhang JT, Lu SQ, Zhuang ZB (2016) Ternary Pd-Ni-P hybrid electrocatalysts derived from Pd-Ni core-shell nanoparticles with enhanced formic acid oxidation activity. Chem Commun 52(74):11143–11146. https://doi.org/10.1039/c6cc04382h

    Article  CAS  Google Scholar 

  47. Huang L, Han YJ, Zhang XP, Fang YX, Dong SJ (2017) One-step synthesis of ultrathin PtxPb nerve-like nanowires as robust catalysts for enhanced methanol electrooxidation. Nanoscale 9(1):201–207. https://doi.org/10.1039/c6nr07036a

    Article  CAS  PubMed  Google Scholar 

  48. Liu YX, Chen FY, Wang Q, Wang JP, Wang JL, Gebremariam TT (2018) Surface plasmon-enhanced activity and stability for methanol oxidation on gold caviar-like assembly under solar light. J Mat Chem A 6(22):10515–10524. https://doi.org/10.1039/c8ta02222d

    Article  CAS  Google Scholar 

  49. Bo XJ, Bai J, Ju J, Guo LP (2011) Highly dispersed Pt nanoparticles supported on poly(ionic liquids) derived hollow carbon spheres for methanol oxidation. J Power Sources 196(20):8360–8365. https://doi.org/10.1016/j.jpowsour.2011.06.068

    Article  CAS  Google Scholar 

  50. Han B, Xu C (2014) Nanoporous PdFe alloy as highly active and durable electrocatalyst for oxygen reduction reaction. Int J Hydrogen Energy 39(32):18247–18255. https://doi.org/10.1016/j.ijhydene.2014.09.006

    Article  CAS  Google Scholar 

  51. Linic S, Aslam U, Boerigter C, Morabito M (2015) Photochemical transformations on plasmonic metal nanoparticles. Nat Mater 14(6)

  52. Wang C, Nie XG, Shi Y, Zhou Y, Xu JJ, Xia XH, Chen HY (2017) Direct plasmon-accelerated electrochemical reaction on gold nanoparticles. ACS Nano 11(6):5897–5905

    Article  CAS  Google Scholar 

  53. Liu J, Sun CQ, Zhu W (2018) Origin of efficient oxygen reduction reaction on Pd monolayer supported on Pd-M (M=Ni, Fe) intermetallic alloy. Electrochim Acta 282:680–686

    Article  CAS  Google Scholar 

  54. Kang Y, Choi D, Cho J, Park H, Lee K, Ahn M, Yoo S (2020) Highly active and durable ordered intermetallic PdFe electrocatalyst for formic acid electro-oxidation reaction. ACS Appl Energy Mater. https://doi.org/10.1021/acsaem.9b02389

    Article  Google Scholar 

  55. Zhai CY, Zhu MS, Pang FZ, Bin D, Lu C, Goh MC, Yang P, Du YK (2016) High efficiency photoelectrocatalytic methanol oxidation on CdS quantum dots sensitized Pt electrode. ACS Appl Mater Interfaces 8(9):5972–5980. https://doi.org/10.1021/acsami.5b10234

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (21501106), the Scientific Research Foundation for the Returned Overseas Chinese Scholars and Qingdao Municipal Science and Technology Commission (16-5-1-86-jch, 19-6-273-cg), and Chemistry Faculty Talents Foundation of Qingdao University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

Zhang Di: design and carrying out most experiments, data analysis, and writing of original draft; Zhang Chaoyang and Gao Hongxu: carrying out parts of experiments and data analysis. Sui Jing and Liu Manhong: data analysis and validation, supporting. Sui Ning, Wang Lina, and Yu William W.: data curation, funding acquisition, formal analysis manuscript revision, and lead.

Corresponding authors

Correspondence to Ning Sui or William W. Yu.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Ethical Approval

There are no ethical issues in this study.

Consent to Publish

All authors are aware of the submission and agree to its publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2249 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Zhang, C., Gao, H. et al. Plasmon-Driven Photothermal Conversion with Two-Dimensional Ultra-thin PdFe Nanosheets for Ethylene Glycol Electrooxidation. Plasmonics 16, 777–786 (2021). https://doi.org/10.1007/s11468-020-01342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01342-0

Keywords

Navigation